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Abstract
Ti:sapphire crystals constitute the lasing medium of a

class of lasers valued for their wide tunability and ultra-short,
ultra-high intensity pulses. When operated at high power
and high repetition rate (1 kHz), such lasers experience mul-
tiple effects that can degrade performance. In particular,
thermal gradients induce a spatial variation in the index of
refraction, hence thermal lensing [1]. Using the open-source
finite-element code FEniCS [2], we solve the relevant partial
differential equations to obtain a quantitative measure of the
disruptive effects of thermal gradients on beam quality. We
present thermal simulations of a pump laser illuminating
a Ti:sapphire crystal. From these simulations we identify
the radial variation in the refractive index, and hence the
extent of thermal lensing. In addition, we present analytic
models used to estimate the effect of thermal gradients on
beam quality. This work generalizes to other types of crystal
amplifiers.

INTRODUCTION
Titanium-doped sapphire (Ti:sapphire) crystals constitute

the lasing medium of a class of lasers valued for their wide
tunability and capacity to produce ultra-short, ultra-high in-
tensity pulses. But when operating at high power with a high
repetition rate (1 to 10s of kHz), multiple natural/thermal/me-
chanical effects can degrade the performance of Ti:sapphire
crystal laser amplifiers.

For example, during steady-state operation, i.e. with a
crystal amplifier operating in equilibrium, thermal gradients
induce both a positional variation in the index of refrac-
tion and mechanical stresses. The changes in the index of
refraction can lead to thermal lensing. And stresses in an
anisotropic, uniaxial crystal such as Ti:sapphire can modify
the crystal’s birefringent characteristics and further degrade
the beam.

THERMAL MODELS AND TIME SCALES
The heat equation derives from conservation of energy

and the Fourier law. In the context of heat flow in a solid,
one may express conservation of energy in the form

𝜌𝜕𝑢
𝜕𝑡 = −∇ ⋅ ⃗𝑞 + 𝑓 , (1)

∗ This work is supported by the US Department of Energy, Office of High
Energy Physics under Award Numbers DE-SC0020931 and DE-AC02-
05CH11231.

where 𝜌 denotes the mass density of the solid, 𝑢 the internal
energy per unit mass, ⃗𝑞 the local heat flux, and 𝑓 a source
term that represents the rate of external heat deposition per
unit volume. This equation expresses the rate of change of
the local energy density as a sum of the local heat loss, −∇⋅ ⃗𝑞,
and the local heat deposition, 𝑓. The Fourier law,

⃗𝑞 = −𝐾𝑐∇Θ, (2)

describes the local heat flux as proportional to and in the
direction opposite the local temperature gradient, ∇Θ, with
the proportionality given by 𝐾𝑐, the thermal conductivity.
One may relate energy density and temperature via the spe-
cific heat, 𝑐𝑝 = 𝜕𝑢/𝜕Θ. This relation allows one to write

̇𝑢 = 𝜕𝑢
𝜕Θ

𝜕Θ
𝜕𝑡 = 𝑐𝑝Θ̇, and ∇𝑢 = 𝜕𝑢

𝜕Θ∇Θ = 𝑐𝑝∇Θ. (3)

In the very simplest case—𝜌, 𝐾𝑐, and 𝑐𝑝 experience neg-
ligible variation over the temperature range of interest—one
may use the above results to derive the linear heat equation:

Θ̇ = 𝐾𝑐
𝜌𝑐𝑝

∇2Θ + 𝑓
𝜌𝑐𝑝

= 𝛼∇2Θ + 𝑔, (4a)

where 𝛼 denotes the thermal diffusivity, 𝐾𝑐/(𝜌𝑐𝑝), and
𝑔 = 𝑓 /(𝜌𝑐𝑝). More generally, however, the quantities 𝐾𝑐
and 𝑐𝑝—and, to a much smaller extent, 𝜌—do vary with
temperature; and one cannot then convert the heat deposi-
tion term 𝑓 to a “temperature deposition” term so simply as
dividing by 𝜌𝑐𝑝. In this case it simplifies matters to work
with 𝑢 in preference to Θ. If we may treat 𝜌 as constant, then
we instead derive the heat equation in the nonlinear form [3]

̇𝑢 = ∇ ⋅ (𝛼(𝑢)∇𝑢) + 𝑓 /𝜌. (4b)

When necessary, one may convert between 𝑢 and Θ by means
of the (monotonically increasing) specific heat capacity.

Time Scales for Thermal Relaxation
For now we focus on the linear form Eq. (4a) of the heat

equation. If the source term vanishes—except for possibly a
brief pulse that defines the initial condition—and we assume
azimuthal symmetry, one may use separation of variables to
identify the essential functional form of the solution:

𝐽0(𝜈𝑟)[cos(𝑘𝑧) + 𝛽 sin(𝑘𝑧)]e−𝛼(𝜈2+𝑘2)𝑡. (5)

A complete solution, written as a linear combination of these
functions, is determined by the boundary conditions, with
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the system geometry constraining the possible eigenvalues
𝜈 and 𝑘.

We consider a crystal of radius 𝑎 and length 𝑙 with its
temperature held at the fixed value Θ𝐷 on its cylindrical
boundary, and unconstrained on the end caps at 𝑧 = 0, 𝑙.
As thermal conduction is orders of magnitude faster than
convection or radiation, we make the approximation that no
heat flows out the end caps. As a consequence of the given
constraints and geometry, the sine terms vanish, and one may
write the crystal’s temperature difference from the boundary
in the Fourier-Bessel series form [4]

ΔΘ(𝑟, 𝑧; 𝑡) =
∞
∑
𝑛=1

∞
∑
𝑚=0

Θ𝑛𝑚𝐽0(𝜈0𝑛𝑟
𝑎 ) cos(𝑚𝜋𝑧

𝑙 )e−𝑡/𝜏𝑛𝑚,

(6)
where each component 𝑛𝑚 experiences its own decay rate

𝜏−1
𝑛𝑚 = 𝛼[(𝜈0𝑛

𝑎 )2 + (𝑚𝜋
𝑙 )2]. (7a)

Here 𝜈0𝑛 denotes the 𝑛th root of 𝐽0. The dominant time-scale
is that of the lowest-order mode:

𝜏10 = 𝑎2

𝜈2
01𝛼 , (7b)

which we note depends only on the crystal geometry and the
thermal diffusivity.

Equilibrium Temperature Profile
To solve Eq. (4a) for the equilibrium temperature profile in

the presence of a steady, azimuthally symmetric heat source
𝑔(𝑟, 𝑧), we (i) set Θ̇ to zero; (ii) expand both temperature,
Θ, and heat source, 𝑔, as Fourier Bessel series (cf. Eq. (6)
with no time dependence); and (iii) equate coefficients as
determined by Eq. (4a). Given a source term of the form

𝑔(𝑟, 𝑧) = 𝑔0 𝑔⟂(𝑟) 𝑔∥(𝑧) = 𝑓0
𝜌𝑐𝑝

e−(𝑟/𝜎)2e−(𝑧−𝑧0)/𝜁, (8)

we obtain the equilibrium temperature profile in the form

ΔΘ(𝑟, 𝑧) = Θ0

∞
∑
𝑛=1

∞
∑
𝑚=0

𝑅𝑛𝑍𝑚𝑋𝑛𝑚𝐽0(𝜈0𝑛𝑟
𝑎 ) cos(𝑚𝜋𝑧

𝑙 ).

(9a)
Here

𝑅𝑛 = 2
[𝜈0𝑛𝐽1(𝜈0𝑛)]2 ∫

𝜈0𝑛

0
𝑥 exp[−( 𝑎𝑥

𝜈0𝑛𝜎)
2
]𝐽0(𝑥) d𝑥,

(9b)

𝑍𝑚 = 2
1 + 𝛿𝑚0

𝑙/𝜁
(𝑙/𝜁)2 + (𝑚𝜋)2 [1 − (−1)𝑚e−𝑙/𝜁], (9c)

𝑋𝑛𝑚 = 𝑙/𝑎
(𝜈0𝑛𝑙/𝑎)2 + (𝑚𝜋)2 . (9d)

And then, with absorbed power 𝑃abs = ∫𝑓 d3 ⃗𝑟 = 𝑓0𝑉eff,

Θ0 = 𝑃abs
4𝜋𝐾𝑐

𝑉cyl
𝑉eff

, (9e)

where 𝑉eff denotes the effective volume into which the source
deposits heat. The 𝑅𝑛 denote Fourier-Bessel coefficients of
the transverse source profile 𝑔⟂(𝑟); the 𝑍𝑚 Fourier coeffi-
cients of the longitudinal source profile 𝑔∥(𝑧); and the 𝑋𝑛𝑚
“cross-terms” that arise from the matching constraints im-
plied by the linear heat equation Eq. (4a).

LONGITUDINAL ABSORPTION OF
GAUSSIAN BEAMS

To test our understanding and benchmark our simula-
tions, we simulate the experimental conditions of a particular
Ti:sapphire crystal under study at the BELLA lab: a cylin-
drical crystal of length 2.5 cm and diameter 1.0 cm. A pump
laser with Gaussian beam profile of width 𝜎 = 0.115 cm
and absorption coefficient 𝜁−1 = 1.2 cm−1 illuminates the
entrance face of the crystal, 𝑧0 = −1.25 cm, along the cylin-
drical axis. Because heat deposition decays exponentially as
the beam traverses the crystal, we use the heat load Eq. (8)
with temperature “deposition rate” and effective volume
given by

d𝑇 = 𝑔0 = 𝑓0
𝜌𝑐𝑝

= 𝑃abs
𝜌𝑐𝑝𝑉eff

, (10)

𝑉eff = 𝜋𝜎2𝜁(1 − e−𝑙/𝜁). (11)

Using the open-source, finite-element PDE solver FE-
niCS [2], we simulated this system and obtained both quali-
tative and quantitative agreement with the above theory: The
system equilibrates to a temperature distribution matching
that given in Eq. (9); and, after turning off the source, we see
the temperature decay exponentially to Θ𝐷 with a thermal
decay time matching that in Eq. (7b). Figure 1 shows a series
of transverse and longitudinal temperature profiles computed
by FEniCS during the approach to thermal equilibrium.

Quantitative agreement with experiment, however, has
proved challenging: Either the decay constant Eq. (7b), the
maximum on-axis temperature, Θ(0, 0), or both, can differ
significantly from that measured experimentally. This chal-
lenge derives from uncertainties in our knowledge of the
thermal and optical properties of Ti:sapphire. We discuss
this in the conclusions.

NEAR-AXIS INDEX OF REFRACTION
A principal motivation for our thermal simulations is a

desire to better understand thermal lensing, wherein ther-
mally induced variations in the index of refraction across
the crystal can focus the laser wavefront [5].

Because the refractive index varies approximately linearly
with temperature, 𝑛(Θ) = 𝑛0 + 𝑛𝑇(Θ − Θ𝐷) [6], and the
near-axis temperature varies approximately quadratically
with radius (see Fig. 1), the near-axis refractive index varies
approximately quadratically with radius: 𝑛(𝑟) = 𝑛0 + 𝑛2𝑟2.
On the basis of data extracted from our thermal simulation,
we thereby compute near-axis profiles for the coefficients 𝑛0
and 𝑛2. See Fig. 2.

Closely related results appear in a companion paper [7].

CONCLUSIONS AND FUTURE WORK
On the basis of the crystal geometry, 𝑟 = 0.5 cm, and the

experimentally measured thermal time scale of c.150 ms,
we compute from Eq. (7b) a thermal diffusivity 𝛼 of about
0.288 cm2/s. Moreover, simulations using this value of 𝛼
exhibit the expected 150 ms decay time. However, tabulated
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Figure 1: Transverse temperature profiles (left) at the crystal center (𝑧 = 0 cm) and longitudinal profiles along the crystal
axis (𝑟 = 0 cm). The individual profiles show convergence towards thermal equilibrium in time steps of 15 ms.

Figure 2: These graphics show the coefficients 𝑛0 (left) and 𝑛2 (right) that describe the temperature-induced radial variation
in the near-axis refractive index: 𝑛(𝑟) = 𝑛0 + 𝑛2𝑟2.

values of the thermal properties of sapphire [8, 9] lead,
cf. Eq. (4a), to values several times smaller: 𝛼 ≈ 0.1 cm2/s.
On the other hand, data sheets specific to Ti:sapphire1 lead to
a very wide range of values: 0.06 cm2/s to 0.31 cm2/s. (We
assume the mass density of Ti:sapphire differs little from
that of sapphire: 𝜌 = 3.98 gm/cm3.)

Apart from geometric factors, the temperature increase at
the center of the crystal’s entrance face depends, cf. Eqs. (9e)
and (11), on the ratio of absorbed power 𝑃abs to the product
of absorption length 𝜁 times thermal conductivity 𝐾𝑐. See
also [10]. A measurement of that temperature increase there-
fore implies (given the known crystal geometry) a value for
that ratio. Then, given a measured temperature increase of
about 7 °C, and inferring experimental values for 𝑃abs and 𝜁,
we thereby compute for 𝐾𝑐 a value of about 0.31 W/(cmK),
close to that quoted in the literature for sapphire, and well
within the range quoted for Ti:sapphire.

Finally, using our derived values for 𝛼 and 𝐾𝑐, we may
compute for the specific heat capacity 𝑐𝑝 a value of about

1 See, for example, https://www.advatech-uk.co.uk/ti_sapphire.
html and http://singlecrystal.eu/html/ti_sapphire.html.

0.267 J/(gmK). This value is of order half that of values
quoted for Ti:sapphire.

A number of uncertainties lead to this state of affairs:
Perhaps most significant is the actual power absorbed as
heat by the crystal: Not only is the absorption coefficient
𝜁−1 uncertain, so is the fractional thermal heat load 𝜂, which
describes the fraction of pump laser energy absorbed as heat.

Our principal lessons here are that we require a better
understanding of the actual laser power that is absorbed as
heat, and also of the corresponding absorption length. In
addition, we require a better understanding of both thermal
conductivity and specific heat capacity in the crystalline
laser gain media—especially the extent to which Ti doping
modifies those parameters. This information is essential for
accurate simulations going forward.

Future work will focus on three areas: (i) Improve our un-
derstanding of the thermal and optical properties of Ti:sap-
phire crystals. (ii) Use physically realistic wavefronts for our
thermal source terms. (iii) Compare experimental measure-
ments of thermal lensing against expectations derived from
curves such as those in Fig. 2.
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