Author: Jiao, Y.
Paper Title Page
MOPOTK056 Data-Driven Chaos Indicator for Nonlinear Dynamics and Applications on Storage Ring Lattice Design 596
 
  • Y. Li, R.S. Rainer
    BNL, Upton, New York, USA
  • Y. Jiao, J. Wan
    IHEP, Beijing, People’s Republic of China
  • A. Liu
    Purdue University, West Lafayette, Indiana, USA
 
  Funding: This research mainly used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.
A data-driven chaos indicator concept is introduced to characterize the degree of chaos for nonlinear dynamical systems. The indicator is represented by the prediction accuracy of surrogate models established purely from data. It provides a metric for the predictability of nonlinear motions in a given system. When using the indicator to implement a tune-scan for a quadratic Henon map, the main resonances and their asymmetric stop-band widths can be identified. When applied to particle transportation in a storage ring, as particle motion becomes more chaotic, its surrogate model prediction accuracy decreases correspondingly. Therefore, the prediction accuracy, acting as a chaos indicator, can be used directly as the objective for nonlinear beam dynamics optimization. This method provides a different perspective on nonlinear beam dynamics and an efficient method for nonlinear lattice optimization. Applications in dynamic aperture optimization are demonstrated as real world examples.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK056  
About • Received ※ 16 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST016 Development Progress of HEPS LINAC 2472
 
  • C. Meng, N. Gan, D.Y. He, X. He, Y. Jiao, J.Y. Li, J.D. Liu, Y.M. Peng, H. Shi, G. Shu, S.C. Wang, O. Xiao, J.R. Zhang, Z.D. Zhang, Z.S. Zhou
    IHEP, Beijing, People’s Republic of China
  • X.H. Lu, X.J. Nie
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The High Energy Photon Source (HEPS) is a synchrotron radiation source of ultrahigh brightness and under construction in China. Its accelerator system is comprised of a 6-GeV storage ring, a full energy booster, a 500-MeV Linac and three transfer lines. The Linac is a S-band normal conducting electron linear accelerator with available bunch charge up to 10 nC. The Linac installation has been finished at the end of May this year. The system joint debugging and device conditioning of the accelerating units, the power supplies, et al., are in progress. The beam commissioning will start in September 2022. This paper presents the status of the HEPS Linac and detailed introduction of the beam commissioning simulations and preparations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST016  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)