Author: Halavanau, A.
Paper Title Page
MOPOTK045 Generation of High Emittance Ratios in High Charge Electron Beams at FACET-II 560
 
  • O. Camacho
    UCLA, Los Angeles, USA
  • A. Halavanau, R. Robles
    SLAC, Menlo Park, California, USA
 
  Funding: DE-SC0009914
Experiments foreseen at FACET-II, including dielectric plasma wakefield acceleration and linear collider tests, call for electron beams with highly asymmetric transverse emittances - so called "flat beams". A canonical recipe for the generation of such beams is injecting a magnetized beam at a waist into an appropriately tuned skewed quadrupole triplet channel. However, due to the intense non-linear space-charge forces that dominate nC bunches, this method presents difficulties in maintaining the flatness. We proceed with generalized round-to-flat-beam (RTFB) transformation, which takes into account the non-negligible divergence of the beam at the channel entrance, using a quartet of skewed quadrupoles. Our analytical results are further optimized in ELEGANT and GPT simulation programs and applied to the case of the FACET-II beamline. Non-ideal cathode spot distributions obtained from recent FACET-II experiments are used for accurate numerical modeling. Tolerances to quadrupole strengths and alignment errors are also considered, with an eye towards developing hardware specifications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK045  
About • Received ※ 03 June 2022 — Revised ※ 24 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT034 Modelling of X-Ray Volume Excitation of the XLO Gain Medium Using Flash 1081
 
  • P. Manwani, N. Majernik, B. Naranjo, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • E.C. Galtier, A. Halavanau, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  Funding: This work was performed with the support of the US Department of Energy under Contract No. DE-AC02-76SF00515 and DESC0009914.
Plasma dynamics and crater formation of laser excited volumes in solids is a complex process due to thermalization, shockwave formation, varying absorption mechanisms, and a wide range of relevant physics timescales. The properties and interaction of such laser-matter systems can be modeled using an equation of state and opacity based multi-temperature treatment of plasma using a radiation hydrodynamics code. Here, we use FLASH, an adaptive mesh radiation-hydrodynamics code, to simulate the plasma expansion following after the initial energy deposition and thermalization of the column, to benchmark the results of experiments undertaken at UCLA on optical laser ablation. These computational results help develop a quantitative understanding of the material excitation process and enable the optimization of the gain medium delivery system for the x-ray laser oscillator project *.
* Halavanau, Aliaksei, et al. "Population Inversion X-Ray Laser Oscillator." Proceedings of the National Academy of Sciences, vol. 117, no. 27, 2020, pp. 15511-15516.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT034  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT036 Two and Multiple Bunches with the LCLS Copper Linac 1089
 
  • F.-J. Decker, W.S. Colocho, A. Halavanau, A.A. Lutman, J.P. MacArthur, G. Marcus, R.A. Margraf, J.C. Sheppard, J.J. Turner, S. Vetter
    SLAC, Menlo Park, California, USA
 
  Two, four, and even eight bunches were accelerated through the copper linac. Two and four bunches were delivered successfully to photon experiments in both the hard (HXR) and soft (SXR) LCLS x-ray lines. In this paper we will concentrate on the more challenging issues, such as: the BPM deconvolution for both bunches, RF kicks at longer separations, tuning challenges, bridging the communications gap between the photon and electron side, the lower bunch charges for the eight bunch case, and rapid timing scans over several ns. We will describe some of the developed solutions and plans for the rest.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT036  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT037 LCLS Multi-Bunch Improvement Plan: First Results 1092
 
  • A. Halavanau, A.L. Benwell, T.G. Beukers, L.B. Borzenets, F.-J. Decker, J. Hugyik, A. Ibrahimov, E.N. Jongewaard, A.K. Krasnykh, A.L. Le, K. Luchini, A.A. Lutman, A. Marinelli, M. Petree, A. Romero, A.V. Sy
    SLAC, Menlo Park, California, USA
 
  LCLS copper linac primarily operates in a single bunch mode with a repetition rate of 120 Hz. Presently, several in-house projects and LCLS user experiments require double- and multi-pulse trains of X-rays, with inter-pulse delay spanning between 0.35 and 220 ns. We discuss beam control improvements to the copper linac using ultra-fast stripline kicker, as well as additional photon diagnostics. We especially focus on a case of double-pulse mode, with 218 ns separation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT037  
About • Received ※ 12 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT039 Characterization of Diamond with Buried Boron-Doped Layer Developed for Q-Switching an X-Ray Optical Cavity 1097
 
  • R.A. Margraf, A. Halavanau, Z. Huang, J. Krzywiński, J.P. MacArthur, G. Marcus, M.L. Ng, A.R. Robert, R. Robles, T. Sato, D. Zhu
    SLAC, Menlo Park, California, USA
  • Z. Huang, F. Ke, R. Robles, Y. Zhong
    Stanford University, Stanford, California, USA
  • S.-K. Mo, Y. Zhong
    LBNL, Berkeley, California, USA
  • P. Pradhan
    ANL, Lemont, Illinois, USA
  • A.R. Robert
    MAX IV Laboratory, Lund University, Lund, Sweden
  • M.D. Ynsa
    UAM, Madrid, Spain
 
  Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.
X-ray Free-Electron Laser Oscillators (XFELOs) and X-ray Regenerative Amplifier FELs (XRAFELs) are currently in development to improve longitudinal coherence and spectral brightness of XFELs. These schemes lase an electron beam in an undulator within an optical cavity to produce X-rays. X-rays circulate in the cavity and interact with fresh electron bunches to seed the FEL process over multiple passes, producing progressively brighter and more spectrally pure X-rays. Typically, the optical cavities used are composed of Bragg-reflecting mirrors to provide high reflectivity and spectral filtering. This high reflectivity necessitates special techniques to out-couple X-rays from the cavity to deliver them to users. One method involves "Q-switching" the cavity by actively modifying the reflectivity of one Bragg-reflecting crystal. To control the crystal lattice constant and thus reflectivity, we use an infrared laser to heat a buried boron layer in a diamond crystal. Here, we build on earlier work in Krzywinski et al.* and present the current status of our Q-switching diamond, including implantation with 9 MeV boron ions, annealing, characterization and early tests.
*Krzywinski et al., "Q-switching of X-Ray Optical Cavities by using Boron Doped Buried Layer under a Surface of a Diamond Crystal," Proceedings of FEL2019, Hamburg, Germany, TUP033, 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT039  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT047 Progress Report on Population Inversion X-Ray Laser Oscillator at LCLS 1107
 
  • A. Halavanau, R. Alonso-Mori, A. Aquila, U. Bergmann, F.-J. Decker, F. Fuller, M. Liang, A.A. Lutman, R.A. Margraf, R.H. Paul, C. Pellegrini
    SLAC, Menlo Park, California, USA
  • R. Ash, N.B. Welke
    UW-Madison/PD, Madison, Wisconsin, USA
  • A.I. Benediktovitch
    DESY, Hamburg, Germany
  • S.C. Krusic
    JSI, Ljubljana, Slovenia
  • N. Majernik, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • R. Robles
    Stanford University, Stanford, California, USA
  • N. Rohringer
    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
 
  We report the progress in the design and construction of a population inversion x-ray laser oscillator (XLO) using LCLS as an x-ray laser pump, being developed by a SLAC, CFEL, University of Hamburg (Germany), University of Wisconsin, Josef Stefan Institute (Slovenia) and UCLA collaboration. In this proceeding, we will present the latest XLO design and numerical simulations substantiated by our first experimental results. In our next experimental step XLO will be tested on the Coherent X-ray Imaging (CXI) end-station at LCLS as a two pass Regenerative Amplifier operating at the Copper Kα1 photon energy of 8048 eV. When built, XLO will generate fully coherent transform limited pulses with about 50 meV FWHM bandwidth. We expect the XLO will pave the way for new user experiments, e.g. in inelastic x-ray scattering, parametric down conversion, quantum science, x-ray interferometry, and external hard x-ray XFEL seeding.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT047  
About • Received ※ 12 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK053 Foiled Again: Solid-State Sample Delivery for High Repetition Rate XFELs 2899
 
  • N. Majernik, N. Inzunza, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • R.B. Agustsson, A. Moro
    RadiaBeam, Santa Monica, California, USA
  • R. Ash, N.B. Welke
    UW-Madison/PD, Madison, Wisconsin, USA
  • U. Bergmann, A. Halavanau, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  Funding: Department of Energy DE-SC0009914 and DE-AC02-76SF00515
XFELs today are capable of delivering high intensity pulse trains of x-rays with up-to MHz to sub-GHz frequency. These x-rays, when focused, can ablate a sample in a single shot, requiring the sample material to be replaced in time for the next shot. For some applications, especially serial crystallography, the sample may be renewed as a dilute solution in a high speed jet. Here, we describe the development and characterization of a system to deliver solid state sample material to an XFEL nanofocus. The first application of this system will be an x-ray laser oscillator operating at the copper Kα line with a ~30 ns cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK053  
About • Received ※ 06 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)