Author: Giovannozzi, M.
Paper Title Page
MOPOST042 Using Dynamic Indicators for Probing Single-Particle Stability in Circular Accelerators 168
 
  • C.E. Montanari, A. Bazzani, G. Turchetti
    Bologna University, Bologna, Italy
  • M. Giovannozzi, C.E. Montanari
    CERN, Meyrin, Switzerland
 
  Computing the long-term behaviour of single-particle motion is a numerically intensive process, as it requires a large number of initial conditions to be tracked for a large number of turns to probe their stability. A possibility to reduce the computational resources required is to provide indicators that can efficiently detect chaotic motion, which are considered precursors to unbounded motion. These indicators could allow skilful selection of a set of initial conditions that could then be considered for long-term tracking. The chaotic nature of each orbit can be assessed by using fast-converging dynamic indicators, such as the Fast Lyapunov Indicator (FLI), the Reversibility Error Method (REM), and the Smallest and Global Alignment Index (SALI and GALI). These indicators are widely used in the field of Celestial Mechanics, but not so widespread in Accelerator Physics. They have been applied both to a modulated Hénon map, as a toy model, as well as to realistic lattices of the High-Luminosity LHC. In this paper, we discuss the results of detailed numerical studies, focusing on their performance in detecting chaotic motions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST042  
About • Received ※ 07 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST043 Testing the Global Diffusive Behaviour of Beam-Halo Dynamics at the CERN LHC Using Collimator Scans 172
SUSPMF063   use link to see paper's listing under its alternate paper code  
 
  • C.E. Montanari, A. Bazzani
    Bologna University, Bologna, Italy
  • M. Giovannozzi, C.E. Montanari, S. Redaelli
    CERN, Meyrin, Switzerland
  • A.A. Gorzawski
    University of Malta, Information and Communication Technology, Msida, Malta
 
  In superconducting circular particle accelerators, controlling beam losses is of paramount importance for ensuring optimal machine performance and an efficient operation. To achieve the required level of understanding of the mechanisms underlying beam losses, models based on global diffusion processes have recently been studied and proposed to investigate the beam-halo dynamics. In these models, the building block of the analytical form of the diffusion coefficient is the stability-time estimate of the Nekhoroshev theorem. In this paper, the developed models are applied to data acquired during collimation scans at the CERN LHC. In these measurements, the collimators are moved in steps and the tail population is re-constructed from the observed losses. This allows an estimate of the diffusion coefficient. The results of the analyses performed are presented and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST043  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST045 A Novel Tool for Beam Dynamics Studies with Hollow Electron Lenses 176
 
  • P.D. Hermes, R. Bruce, R. De Maria, M. Giovannozzi, G. Iadarola, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  Hollow Electron Lenses (HELs) are crucial components of the CERN LHC High Luminosity Upgrade (HL-LHC), serving the purpose of actively controlling the population of the transverse beam halo to reduce particle losses on the collimation system. Symplectic particle tracking simulations are required to optimize the efficiency and study potentially undesired beam dynamics effects with the HELs. With the relevant time scales in the collider in the order of several minutes, tracking simulations require considerable computing resources. A new tracking tool, Xsuite, developed at CERN since 2021, offers the possibility of performing such tracking simulations using graphics processing units (GPUs), with promising perspectives for the simulation of hadron beam dynamics with HELs. In this contribution, we present the implementation of HEL physics effects in the new tracking framework. We compare the performance with previous tools and show simulation results obtained using known and newly established simulation setups.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST045  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST047 Determination of the Phase-Space Stability Border with Machine Learning Techniques 183
 
  • F.F. Van der Veken, R. Akbari, M.P. Bogaert, E. Fol, M. Giovannozzi, A.L. Lowyck, C.E. Montanari, W. Van Goethem
    CERN, Meyrin, Switzerland
 
  The dynamic aperture (DA) of a hadron accelerator is represented by the volume in phase space that exhibits bounded motion, where we disregard any disconnected parts that could be due to stable islands. To estimate DA in numerical simulations, it is customary to sample a set of initial conditions using a polar grid in the transverse planes, featuring a limited number of angles and using evenly distributed radial amplitudes. This method becomes very CPU intensive when detailed scans in 4D, and even more in higher dimensions, are used to compute the dynamic aperture. In this paper, a new method is presented, in which the border of the phase-space stable region is identified using a machine learning (ML) model. This allows one to optimise the computational time by taking the complex geometry of the phase space into account, using adaptive sampling to increase the density of initial conditions along the border of stability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST047  
About • Received ※ 06 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT009 Operational Scenario of First High Luminosity LHC Run 1846
 
  • R. Tomás García, G. Arduini, P. Baudrenghien, R. Bruce, O.S. Brüning, X. Buffat, R. Calaga, F. Cerutti, R. De Maria, J. Dilly, I. Efthymiopoulos, M. Giovannozzi, P.D. Hermes, G. Iadarola, O.R. Jones, S. Kostoglou, E.H. Maclean, N. Mounet, E. Métral, Y. Papaphilippou, S. Redaelli, G. Sterbini, H. Timko, F.F. Van der Veken, J. Wenninger, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  A new scenario for the first operational run of the HL-LHC era (Run 4) has been recently developed to accommodate a period of performance ramp-up to achieve an annual integrated luminosity close to the nominal HL-LHC design. The operational scenario in terms of beam parameters and machine settings, as well as the different phases, are described here along with the impact of potential delays on key hardware components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT009  
About • Received ※ 19 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT059 Corrections of Systematic Normal Decapole Field Errors in the HL-LHC Separation/Recombination Dipoles 1991
 
  • J. Dilly, M. Giovannozzi, R. Tomás García, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
Magnetic measurements revealed that the normal decapole (b5) errors of the recombination dipoles (D2) could have a systematic component of up to 11 units. Based on previous studies, it was predicted that the current corrections would not be able to compensate this, thereby leading to a degradation of the dynamic aperture by about 0.5 - 1 ’. On the other hand, the separation dipole D1 is expected to have a systematic b5 component of 6-7 units and its contribution to the resonance driving terms will partly compensate the effect of D2, due to the opposite field strength of the main component. Simulations were performed with the HL-LHC V1.4 lattice to test these concerns and to verify the compensation assumption. In addition, various normal decapole resonance driving terms were examined for correction, the results of which are presented in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT059  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)