JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for MOPOST042: Using Dynamic Indicators for Probing Single-Particle Stability in Circular Accelerators

TY  - CONF
AU  - Montanari, C.E.
AU  - Bazzani, A.
AU  - Giovannozzi, M.
AU  - Turchetti, G.
ED  - Zimmermann, Frank
ED  - Tanaka, Hitoshi
ED  - Sudmuang, Porntip
ED  - Klysubun, Prapong
ED  - Sunwong, Prapaiwan
ED  - Chanwattana, Thakonwat
ED  - Petit-Jean-Genaz, Christine
ED  - Schaa, Volker R.W.
TI  - Using Dynamic Indicators for Probing Single-Particle Stability in Circular Accelerators
J2  - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022
CY  - Bangkok, Thailand
T2  - International Particle Accelerator Conference
T3  - 13
LA  - english
AB  - Computing the long-term behaviour of single-particle motion is a numerically intensive process, as it requires a large number of initial conditions to be tracked for a large number of turns to probe their stability. A possibility to reduce the computational resources required is to provide indicators that can efficiently detect chaotic motion, which are considered precursors to unbounded motion. These indicators could allow skilful selection of a set of initial conditions that could then be considered for long-term tracking. The chaotic nature of each orbit can be assessed by using fast-converging dynamic indicators, such as the Fast Lyapunov Indicator (FLI), the Reversibility Error Method (REM), and the Smallest and Global Alignment Index (SALI and GALI). These indicators are widely used in the field of Celestial Mechanics, but not so widespread in Accelerator Physics. They have been applied both to a modulated Hénon map, as a toy model, as well as to realistic lattices of the High-Luminosity LHC. In this paper, we discuss the results of detailed numerical studies, focusing on their performance in detecting chaotic motions.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 168
EP  - 171
KW  - lattice
KW  - alignment
KW  - dynamic-aperture
KW  - software
KW  - simulation
DA  - 2022/07
PY  - 2022
SN  - 2673-5490
SN  - 978-3-95450-227-1
DO  - doi:10.18429/JACoW-IPAC2022-MOPOST042
UR  - https://jacow.org/ipac2022/papers/mopost042.pdf
ER  -