Author: Garland, J.M.
Paper Title Page
MOOYGD1
Experiments Towards High-Repetition Rate Plasma Wakefield Acceleration at FLASHForward  
 
  • G. Loisch, J. Beinortaite, G.J. Boyle, R.T.P. D’Arcy, S. Diederichs, J.M. Garland, P. Gonzalez-Caminal, C.A. Lindstrøm, J. Osterhoff, T. Parikh, S. Schreiber, S. Schröder, M. Thévenet, S. Wesch, M. Wing
    DESY, Hamburg, Germany
  • J. Chappell, M. Wing
    UCL, London, United Kingdom
  • B. Foster
    JAI, Oxford, United Kingdom
  • P. Gonzalez-Caminal
    Universität Hamburg, Hamburg, Germany
 
  Beam-driven plasma-wakefield acceleration (PWFA) is one of the most promising techniques to reduce significantly the size and cost of future lepton accelerators. Huge steps have been taken in the last decades towards achieving high acceleration gradients with simultaneous beam-quality preservation. However, in order to match both the luminosity demands of high-energy physics and the brilliance requirements of photon science, PWFA must be capable of accelerating thousands of bunches per second ’ orders of magnitude beyond the current state of the art. Historically, investigation of the rate limitation in plasmas was limited by the number of bunches available from the accelerator front-end. The FLASHForward facility, which is driven by the superconducting linac of the FLASH free-electron laser, is the first experiment capable of addressing this issue. We report here on first experimental results from the facility, aimed at determining the repetition rate limit of plasma accelerators arising from fundamental plasma processes* and finally advancing the repetition rate of PWFA from proof-of-principle experiments at a few bunches per second to a competitive plasma accelerator.
* R. D’Arcy et al., Recovery time of a plasma-wakefield accelerator, Nature (in press)
 
slides icon Slides MOOYGD1 [2.953 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT021 A Discharge Plasma Source Development Platform for Accelerators: The ADVANCE Lab at DESY 1886
 
  • J.M. Garland, R.T.P. D’Arcy, M. Dinter, S. Karstensen, S. Kottler, G. Loisch, K. Ludwig, J. Osterhoff, A. Rahali, A. Schleiermacher, S. Wesch
    DESY, Hamburg, Germany
 
  Novel plasma-based accelerators, as well as advanced, high-gradient beam-manipulation techniques’for example passive or active plasma lenses’require reliable and well-characterized plasma sources, each optimized for their individual task. A very efficient and proven way of producing plasmas for these applications is by directly discharging an electrical current through a confined gas volume. To host the development of such discharge-based plasma sources for advanced accelerators, the ATHENA Discharge deVelopment ANd Characterization Experiment (ADVANCE) laboratory has been established at DESY. In this contribution we introduce the laboratory, give a summary of available infrastructure and diagnostics, as well as a brief overview of current and planned scientific goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT021  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)