Author: D’Andrea, M.
Paper Title Page
TUPOTK060 Simulations of Miscut Effects on the Efficiency of a Crystal Collimation System 1358
 
  • M. D’Andrea, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  Funding: Research supported by the HL-LHC project.
The concept of crystal collimation relies on the use of bent crystals which can coherently deflect high-energy halo particles at angles orders of magnitude larger than what is obtained from scattering with conventional materials. Crystal collimation is studied to further improve the collimation efficiency at the High Luminosity Large Hadron Collider (HL-LHC). In order to reproduce the main experimental results of crystal collimation tests and to predict the performance of such a system, a simulation routine capable of modeling interactions of beam particles with crystal collimators was developed and recently integrated into the latest release of the single-particle tracking code SixTrack. A new treatment of the miscut angle, i.e. the angle between crystalline planes and crystal edges, was implemented to study the effects of this manufacturing imperfection on the efficiency of a crystal collimation system. In this paper, the updated miscut angle model is described and simulation results on the cleaning efficiency are presented, using configurations tested during Run 2 of the LHC as a case study.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK060  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK061 Prospects to Apply Machine Learning to Optimize the Operation of the Crystal Collimation System at the LHC 1362
 
  • M. D’Andrea, G. Azzopardi, M. Di Castro, E. Matheson, D. Mirarchi, S. Redaelli, G. Valentino
    CERN, Meyrin, Switzerland
  • G. Ricci
    Sapienza University of Rome, Rome, Italy
 
  Funding: Research supported by the HL-LHC project.
Crystal collimation relies on the use of bent crystals to coherently deflect halo particles onto dedicated collimator absorbers. This scheme is planned to be used at the LHC to improve the betatron cleaning efficiency with high-intensity ion beams. Only particles with impinging angles below 2.5 urad relative to the crystalline planes can be efficiently channeled at the LHC nominal top energy of 7 Z TeV. For this reason, crystals must be kept in optimal alignment with respect to the circulating beam envelope to maximize the efficiency of the channeling process. Given the small angular acceptance, achieving optimal channeling conditions is particularly challenging. Furthermore, the different phases of the LHC operational cycle involve important dynamic changes of the local orbit and optics, requiring an optimized control of position and angle of the crystals relative to the beam. To this end, the possibility to apply machine learning to the alignment of the crystals, in a dedicated setup and in standard operation, is considered. In this paper, possible solutions for automatic adaptation to the changing beam parameters are highlighted and plans for the LHC ion runs starting in 2022 are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK061  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK018 Simulation of Heavy-Ion Beam Losses with Crystal Collimation* 2082
SUSPMF048   use link to see paper's listing under its alternate paper code  
 
  • R. Cai, R. Bruce, R. Bruce, M. D’Andrea, L.S. Esposito, P.D. Hermes, A. Lechner, A. Lechner, D. Mirarchi, J.B. Potoine, S. Redaelli, F. Salvat Pujol, J. Schoofs
    CERN, Meyrin, Switzerland
  • J.B. Potoine
    IES, Montpellier, France
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  With the higher stored energy envisioned for future heavy-ion runs in the LHC and the challenging fragmentation aspect of heavy-ion beams due to interaction with collimator material, the need arises for even more performing collimation systems. One promising solution is crystal channeling, which is used in the HL-LHC baseline and starts with Run III for heavy-ion collimation. To investigate an optimal configuration for the collimation system, a well-tested simulation setup is required. This work shows the simulations of channeling and other coherent effects in the SixTrack-FLUKA Coupling simulation framework and compares simulated loss patterns with data from previous beam tests.
*Research supported by the HL’LHC project
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK018  
About • Received ※ 07 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)