Author: Damerau, H.
Paper Title Page
MOPOST006 Beam Commissioning and Optimisation in the CERN Proton Synchrotron After the Upgrade of the LHC Injectors 54
 
  • A. Huschauer, M.R. Coly, D.G. Cotte, H. Damerau, M. Delrieux, J.-C. Dumont, Y. Dutheil, S.E.R. Easton, M.A. Fraser, O. Hans, G.I. Imesch, S. Joly, A. Lasheen, C.L. Lombard, R. Maillet, B. Mikulec, J.-M. Nonglaton, S. Sainz Perez, B. Salvant, R. Suykerbuyk, F. Tecker, R. Valera Teruel
    CERN, Meyrin, Switzerland
 
  The CERN LHC injector chain underwent a major upgrade during the Long Shutdown 2 (LS2) in the framework of the LHC Injectors Upgrade (LIU) project. After 2 years of installation work, the Proton Synchrotron (PS) was restarted in 2021 with the goal to achieve pre-LS2 beam quality by the end of 2021. This contribution details the main beam commissioning milestones, encountered difficulties and lessons learned. The status of the fixed-target and LHC beams will be given and improvements in terms of performance, controls and tools described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST006  
About • Received ※ 01 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST005 RF Voltage Calibration Using Phase Space Tomography in the CERN SPS 841
 
  • D. Quartullo, S.C.P. Albright, H. Damerau, A. Lasheen, G. Papotti, C. Zisou
    CERN, Meyrin, Switzerland
 
  Voltage calibration using longitudinal phase-space tomography is a purely beam-based technique to determine the effective RF voltage experienced by a bunch. It was applied in the SPS, separately to each of its six accelerating travelling wave structures. A low spread in voltage errors was obtained by carefully optimizing the number of acquired bunch profiles. The technique moreover provided the relative phases of the cavities, which allowed their alignment to be checked. Pairs of cavities were measured as well to validate the consistency of the single-cavity voltages. The beam measurements were repeated after several months to confirm the reproducibility of the results. Longitudinal beam dynamics simulations, including the full SPS impedance model, were performed as a benchmark. The aim was to verify that the effect of the cable transfer-function on the bunch profiles can be neglected, as well as collective effects and small errors in the accelerator parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST005  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST006 Frequency-Dependent RF Voltage Calibration Using Longitudinal Tomography in the CERN PSB 845
 
  • D. Quartullo, S.C.P. Albright, H. Damerau
    CERN, Meyrin, Switzerland
 
  Longitudinal phase-space tomography reconstructs the phase-space distribution from a set of bunch profiles and the accelerator parameters, which includes the RF voltage. The quality of the reconstruction depends on the accuracy to which these parameters are known. Therefore, it can be used for beam-based RF voltage calibration by analysing oscillations of a mismatched bunch. The actual RF voltage may be different from the programmed one due to uncertainties of the electrical gap voltage measurements and intensity effects. Tomography-based RF voltage calibration was systematically performed with low-intensity bunches in all four rings of the PS Booster (PSB) at injection and extraction energy. For each of the three RF cavities present in a given ring, the calibration was performed separately to extract the voltage errors while avoiding any influence of phase misalignments. The number of synchrotron oscillation periods available for the voltage calibration was constrained by the short duration of the PSB flat-bottom and top. Longitudinal beam dynamics simulations using the full PSB impedance model were performed to benchmark the results provided by the calibrations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST006  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIYGD1 Achievements and Performance Prospects of the Upgraded LHC Injectors 1610
 
  • V. Kain, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, F. Antoniou, T. Argyropoulos, F. Asvesta, B. Balhan, M.J. Barnes, D. Barrientos, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, A. Boccardi, J.C.C.M. Borburgh, C. Bracco, E. Carlier, D.G. Cotte, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, M. Jaussi, I. Karpov, T. Koevener, D. Küchler, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, N. Madysa, E. Mahner, M. Meddahi, L. Mether, B. Mikulec, J.C. Molendijk, E. Montesinos, D. Nisbet, F.-X. Nuiry, G. Papotti, K. Paraschou, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, E. Renner, F. Roncarolo, G. Rumolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, P.K. Skowroński, A. Spierer, F. Tecker, D. Valuch, F.M. Velotti, R. Wegner, C. Zannini
    CERN, Meyrin, Switzerland
 
  To provide HL-LHC performance, the CERN LHC injector chain underwent a major upgrade during an almost 2-year-long shutdown. In the first half of 2021 the injectors were gradually re-started with the aim to reach at least pre-shutdown parameters for LHC as well as for fixed target beams. The strategy of the commissioning across the complex, a summary of the many challenges and finally the achievements will be presented. Several lessons were learned and have been integrated to define the strategy for the performance ramp-up over the coming years. Remaining limitations and prospects for LHC beam parameters at the exit of the LHC injector chain in the years to come will be discussed. Finally, the emerging need for improved operability of the CERN complex will be addressed, with a description of the first efforts to meet the availability and flexibility requirements of the HL-LHC era while at the same time maximizing fixed target physics output.  
slides icon Slides WEIYGD1 [5.905 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYGD1  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT055 Linac3, LEIR and PS Performance with Ions in 2021 and Prospects for 2022 1983
 
  • N. Biancacci, S.C.P. Albright, R. Alemany-Fernández, D. Alves, M.E. Angoletta, D. Barrientos, H. Bartosik, G. Bellodi, S.B. Bertolo, D. Bodart, M. Bozzolan, H. Damerau, F.D.L. Di Lorenzo, A. Frassier, D. Gamba, A. Huschauer, S. Jensen, V. Kain, T. Koevener, G. Kotzian, D. Küchler, A. Lasheen, G. Le Godec, T.E. Levens, N. Madysa, E. Mahner, O. Marqversen, C.M. Mastrostefano, P.D. Meruga, C. Mutin, M. O’Neil, G. Piccinini, R. Scrivens, P.S. Solvang, D. Valuch, F.M. Velotti, R. Wegner, C. Wetton, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  CERN accelerators underwent a period of long shutdown from the end of 2018 to 2020. During this time frame, significant hardware and software upgrades have been put in place to increase the performance of both proton and ion accelerator chains in the High Luminosity LHC era. In the context of the CERN lead ion chain, 2021 has been mainly devoted to restore the injectors’ performance and to successfully prove the slip-stacking technique in SPS. In this paper we summarise the key milestones of the ion beam commissioning and the achieved beam performance for the Linac 3 (including the source), LEIR and PS accelerators, together with an outlook on 2022 operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT055  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK028 Implementation of RF Channeling at the CERN PS for Spill Quality Improvements 2114
 
  • P.A. Arrutia Sota, H. Damerau, M.A. Fraser, M. Vadai, F.M. Velotti
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
 
  Resonant slow extraction from synchrotrons aims at providing constant intensity spills over timescales much longer than the revolution period of the machine. However, the extracted intensity is undesirably modulated by noise on the machine’s power converters with a frequency range of between 50 Hz and a few kHz. The impact of power converter noise can be suppressed by exploiting a Radio Frequency (RF) technique known as empty bucket channelling, which increases the speed at which particles cross the tune resonance boundary. In this contribution the implementation of empty bucket channelling in the CERN Proton Synchrotron (PS) is described via simulation and measurement. The technique was tested with both a resonant RF cavity and an inductive Finemet cavity, which can produce non-sinusoidal waveforms, to significantly reduce the low frequency noise observed on the extracted spill.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK028  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK046 Improved Longitudinal Performance of the LHC Beam in the CERN PS 2165
 
  • H. Damerau, V.D. Desquiens, A. Huschauer, A. Jibar, A. Lasheen, B. Mikulec, M. Morvillo, C. Rossi, B.J. Woolley
    CERN, Meyrin, Switzerland
 
  At the end of the 2018 run the intensity target for the High-Luminosity LHC (HL-LHC) had just been reached at extraction from the Proton Synchrotron (PS). In the framework of the LHC Injectors Upgrade (LIU) project additional RF improvements have been implemented during the 2019/2020 long shutdown (LS2), mainly impacting the impedance of the 10 MHz, 40 MHz, and 80 MHz RF systems. With the upgraded injection energy of 2 GeV (kinetic), also the intermediate plateau energy for RF manipulations has been increased. Following a campaign of beam studies throughout the 2021 run, a bunch intensity of up to 2.9·1011 p/b in trains of 72 bunches is achieved with the required longitudinal beam quality, surpassing the LIU target of 2.6·1011 p/b. The threshold of longitudinal quadrupolar coupled-bunch instabilities is increased during acceleration, but they are again observed at the flat-top. While dipolar coupled-bunch oscillations are well damped by a dedicated feedback system, the quadrupolar modes are suppressed by operating a 40 MHz system as an active higher-harmonic Landau cavity. The main commissioning steps are outlined, together with the key contributions to the improved beam performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK046  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROXSP1 20-Year Collaboration on Synchrotron RF Between CERN and J-PARC 3130
 
  • C. Ohmori
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M. Brucoli, M. Brugger, H. Damerau, S. Danzeca, M.M. Paoluzzi, C. Rossi
    CERN, Meyrin, Switzerland
  • K. Hasegawa, Y. Morita, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • H. Okita, M.J. Shirakata, F. Tamura
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  KEK/J-PARC and CERN started the collaboration on the RF systems of Low Energy Ion Ring to use magnetic alloy loaded cavities in 2002 for heavy ion collision program at LHC. It was an exchange of our expertise on the wideband cavities and high-power solid-state amplifiers. This paper summarizes the 20-year collaboration which includes many synchrotrons of both facilities: J-PARC Rapid Cycling Synchrotron and Main Ring, CERN Proton Synchrotron, PS Booster, Antiproton Decelerator, Extra Low Energy Antiproton ring and MedAustron. By the improvements of cavity core using the magnetic annealing, field gradient of cavity and compactness were improved to fit the requirements for LHC Injector Upgrade (LIU)program. Radiation-hard and compact high-power solid-state amplifiers were also developed for LIU and future accelerator improvements.  
slides icon Slides FROXSP1 [8.210 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FROXSP1  
About • Received ※ 07 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 19 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)