Author: Burt, G.
Paper Title Page
TUPOTK033 First RF Measurements of Planar SRF Thin Films with a High Throughput Test Facility at Daresbury Laboratory 1283
 
  • D.J. Seal, G. Burt, P. Goudket, O.B. Malyshev, B.S. Sian, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt, D.J. Seal, B.S. Sian
    Lancaster University, Lancaster, United Kingdom
  • P. Goudket, O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Goudket
    ESS, Lund, Sweden
  • H.S. Marks
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The research on superconducting thin films for future radio frequency (RF) cavities requires measuring the RF properties of these films. However, coating and testing thin films on full-sized cavities is both challenging and timeconsuming. As a result, films are typically deposited on small, flat samples and characterised using a test cavity. At Daresbury Laboratory, a facility for testing 10 cm diameter samples has recently been commissioned. The cavity uses RF chokes to allow physical and thermal separation between itself and the sample under test. The facility allows for surface resistance measurements at a resonant frequency of 7.8 GHz, at temperatures down to 4 K, maximum RF power of 1 W and peak magnetic fields of a few mT. The main advantage of this system is the simple sample mounting procedure due to no physical welding between the sample and test cavity. This allows for a fast turnaround time of two to three days between samples. As such, this system can be used to quickly identify which samples are performing well under RF and should require further testing at higher gradient. Details of recent upgrades to this facility, together with measurements of both bulk niobium and thin film samples, will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK033  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST020 Visualisation of Pareto Optimal Spaces and Optimisation Solution Selection Using Parallel Coordinate Plots 2487
SUSPMF017   use link to see paper's listing under its alternate paper code  
 
  • S.J. Smith, R. Apsimon, G. Burt, M.J.W. Southerby
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S. Setiniyaz
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Setiniyaz
    Lancaster University, Lancaster, United Kingdom
 
  In this paper, we build on previous work where multi-objective genetic algorithms were used to optimise RF cavities using non-uniform rational basis splines (NURBS) to improve the cavity geometries and reduce peak fields. These optimisations can produce thousands of Pareto optimal solutions, from which a final cavity solution must be selected based on design criteria, such as accelerating gradient and power requirements. As all points are considered equally optimal, this can prove difficult without further analysis. Here we focus on the visualisation of the Pareto optimal points and the final solution selection process. We have found that the use of clustering algorithms and parallel coordinate plots (PCPs) provide the best way to represent the data and perform the necessary trade-offs between the peak fields and shunt impedance required to pick a final design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST020  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)