Author: Albright, S.C.P.
Paper Title Page
MOPOPT043 Recent Developments in Longitudinal Phase Space Tomography 347
 
  • S.C.P. Albright, A. Lasheen
    CERN, Meyrin, Switzerland
  • C.H. Grindheim
    NTNU, Trondheim, Norway
  • A.H.C. Lu
    KTH/NADA, Stockholm, Sweden
 
  Longitudinal phase space tomography has been a mainstay of longitudinal beam diagnostics in most of the CERN synchrotrons for over two decades. Originally, the reconstructions were performed by a highly optimised Fortran implementation. To facilitate increased flexibility, and leveraging the significant increase in computing power since the original development, a new version of the reconstruction code has been developed. This implements an object-oriented Python API, with the computationally heavy calculations in C++ for improved performance. The Python/C++ implementation is designed to be highly modular, enabling new and diverse use cases. For example, the macro-particle tracking for the tomography can now be performed externally, or a single set of tracked particles can be reused for multiple reconstructions. This paper summarises the features of the new implementation, and some of the key applications that have been enabled as a result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT043  
About • Received ※ 30 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST005 RF Voltage Calibration Using Phase Space Tomography in the CERN SPS 841
 
  • D. Quartullo, S.C.P. Albright, H. Damerau, A. Lasheen, G. Papotti, C. Zisou
    CERN, Meyrin, Switzerland
 
  Voltage calibration using longitudinal phase-space tomography is a purely beam-based technique to determine the effective RF voltage experienced by a bunch. It was applied in the SPS, separately to each of its six accelerating travelling wave structures. A low spread in voltage errors was obtained by carefully optimizing the number of acquired bunch profiles. The technique moreover provided the relative phases of the cavities, which allowed their alignment to be checked. Pairs of cavities were measured as well to validate the consistency of the single-cavity voltages. The beam measurements were repeated after several months to confirm the reproducibility of the results. Longitudinal beam dynamics simulations, including the full SPS impedance model, were performed as a benchmark. The aim was to verify that the effect of the cable transfer-function on the bunch profiles can be neglected, as well as collective effects and small errors in the accelerator parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST005  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST006 Frequency-Dependent RF Voltage Calibration Using Longitudinal Tomography in the CERN PSB 845
 
  • D. Quartullo, S.C.P. Albright, H. Damerau
    CERN, Meyrin, Switzerland
 
  Longitudinal phase-space tomography reconstructs the phase-space distribution from a set of bunch profiles and the accelerator parameters, which includes the RF voltage. The quality of the reconstruction depends on the accuracy to which these parameters are known. Therefore, it can be used for beam-based RF voltage calibration by analysing oscillations of a mismatched bunch. The actual RF voltage may be different from the programmed one due to uncertainties of the electrical gap voltage measurements and intensity effects. Tomography-based RF voltage calibration was systematically performed with low-intensity bunches in all four rings of the PS Booster (PSB) at injection and extraction energy. For each of the three RF cavities present in a given ring, the calibration was performed separately to extract the voltage errors while avoiding any influence of phase misalignments. The number of synchrotron oscillation periods available for the voltage calibration was constrained by the short duration of the PSB flat-bottom and top. Longitudinal beam dynamics simulations using the full PSB impedance model were performed to benchmark the results provided by the calibrations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST006  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST024 A New Beam Loading Compensation and Blowup Control System Using Multi-Harmonic Digital Feedback Loops in the CERN Proton Synchrotron Booster 907
 
  • D. Barrientos, S.C.P. Albright, M.E. Angoletta, A. Findlay, M. Jaussi, J.C. Molendijk
    CERN, Meyrin, Switzerland
 
  As part of the LHC Injectors Upgrade, the CERN Proton Synchrotron Booster (PSB) has been upgraded with new wide-band Finemet cavities and a renovated Low-Level Radio Frequency system with digital cavity controllers implemented in FPGAs. Each controller synchronously receives the computed revolution frequency, used to generate 16 harmonic references. These are then used to IQ demodulate the voltage gap and modulate the 16 RF drive signals each controlled through a Cartesian feedback loop (with individual voltage and phase control). The sum of these digital drive signals is then sent to the cavities. In addition, a configurable blow-up system providing a sinusoidal or custom noise pattern can be used to excite the beam. An embedded network analyzer allows studying the stability of the feedback loops of the individual harmonics. The 16 harmonic feedback loops have been successfully operated during 2021, allowing to reduce the beam induced voltage and control the longitudinal emittance of the beam. In this paper we present the system architecture as well as the performance of the complete cavity controller during operation in the PSB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST024  
About • Received ※ 23 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST025 Beam Commissioning of the New Digital Low-Level RF System for CERN’s AD 911
 
  • M.E. Angoletta, S.C.P. Albright, D. Barrientos, A. Findlay, M. Jaussi, A. Rey, M. Sumiński
    CERN, Meyrin, Switzerland
 
  CERN’s Antiproton Decelerator (AD) has been re-furbished to provide reliable operation for the Extra Low ENergy Antiproton ring (ELENA). In particular, AD was equipped with a new digital Low-Level RF (LLRF) system that was successfully commissioned during the summer 2021. The new AD LLRF system has routinely captured and decelerated more than 3·107 antiprotons from 3.5 GeV/c to 100 MeV/c in successive steps, referred to as RF segments, interleaved by cooling periods. The LLRF system implements the frequency program from Btrain data received over optical fiber. Beam phase/radial and cavity amplitude/phase feedback loops are operated during each RF segment. An extraction synchronization loop is triggered on the extraction RF segment to transfer a single bunch of antiprotons to ELENA. Extensive diagnostics features are available and operational modes such as bunched beam cooling and bunch rotation have been successfully deployed. The LLRF parameters can be different for each RF segment and are controlled by a dedicated application. This paper gives an overview of the AD LLRF beam commissioning results obtained and challenges overcome. Hints on future steps are also provided.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST025  
About • Received ※ 25 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIYGD1 Achievements and Performance Prospects of the Upgraded LHC Injectors 1610
 
  • V. Kain, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, F. Antoniou, T. Argyropoulos, F. Asvesta, B. Balhan, M.J. Barnes, D. Barrientos, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, A. Boccardi, J.C.C.M. Borburgh, C. Bracco, E. Carlier, D.G. Cotte, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, M. Jaussi, I. Karpov, T. Koevener, D. Küchler, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, N. Madysa, E. Mahner, M. Meddahi, L. Mether, B. Mikulec, J.C. Molendijk, E. Montesinos, D. Nisbet, F.-X. Nuiry, G. Papotti, K. Paraschou, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, E. Renner, F. Roncarolo, G. Rumolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, P.K. Skowroński, A. Spierer, F. Tecker, D. Valuch, F.M. Velotti, R. Wegner, C. Zannini
    CERN, Meyrin, Switzerland
 
  To provide HL-LHC performance, the CERN LHC injector chain underwent a major upgrade during an almost 2-year-long shutdown. In the first half of 2021 the injectors were gradually re-started with the aim to reach at least pre-shutdown parameters for LHC as well as for fixed target beams. The strategy of the commissioning across the complex, a summary of the many challenges and finally the achievements will be presented. Several lessons were learned and have been integrated to define the strategy for the performance ramp-up over the coming years. Remaining limitations and prospects for LHC beam parameters at the exit of the LHC injector chain in the years to come will be discussed. Finally, the emerging need for improved operability of the CERN complex will be addressed, with a description of the first efforts to meet the availability and flexibility requirements of the HL-LHC era while at the same time maximizing fixed target physics output.  
slides icon Slides WEIYGD1 [5.905 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYGD1  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT055 Linac3, LEIR and PS Performance with Ions in 2021 and Prospects for 2022 1983
 
  • N. Biancacci, S.C.P. Albright, R. Alemany-Fernández, D. Alves, M.E. Angoletta, D. Barrientos, H. Bartosik, G. Bellodi, S.B. Bertolo, D. Bodart, M. Bozzolan, H. Damerau, F.D.L. Di Lorenzo, A. Frassier, D. Gamba, A. Huschauer, S. Jensen, V. Kain, T. Koevener, G. Kotzian, D. Küchler, A. Lasheen, G. Le Godec, T.E. Levens, N. Madysa, E. Mahner, O. Marqversen, C.M. Mastrostefano, P.D. Meruga, C. Mutin, M. O’Neil, G. Piccinini, R. Scrivens, P.S. Solvang, D. Valuch, F.M. Velotti, R. Wegner, C. Wetton, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  CERN accelerators underwent a period of long shutdown from the end of 2018 to 2020. During this time frame, significant hardware and software upgrades have been put in place to increase the performance of both proton and ion accelerator chains in the High Luminosity LHC era. In the context of the CERN lead ion chain, 2021 has been mainly devoted to restore the injectors’ performance and to successfully prove the slip-stacking technique in SPS. In this paper we summarise the key milestones of the ion beam commissioning and the achieved beam performance for the Linac 3 (including the source), LEIR and PS accelerators, together with an outlook on 2022 operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT055  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK011 High Intensity Studies in the CERN Proton Synchrotron Booster 2056
 
  • F. Asvesta, S.C.P. Albright, F. Antoniou, H. Bartosik, C. Bracco, G.P. Di Giovanni, G. Rumolo, P.K. Skowroński, C. Zannini
    CERN, Meyrin, Switzerland
  • E. Renner
    TU Vienna, Wien, Austria
 
  After the successful implementation of the LHC Injectors Upgrade (LIU) project, studies were conducted in the CERN Proton Synchrotron Booster (PSB) in order to assess the intensity reach with the increased beam brightness. The studies focused on the high intensity beams delivered to the PSB users, both at 1.4 and 2 GeV. In addition, possible intensity limitations in view of the Physics Beyond Colliders (PBC) Study were investigated. To this end, various machine configurations were tested including different resonance compensation schemes and chromaticity settings in correlation with the longitudinal parameters. This paper summarizes the results obtained since the machine recommissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK011  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK012 Commissioning the New LLRF System of the CERN PS Booster 2060
 
  • S.C.P. Albright, M.E. Angoletta, D. Barrientos, A. Findlay, M. Jaussi, J.C. Molendijk
    CERN, Meyrin, Switzerland
 
  The PS Booster (PSB) is the first synchrotron in the injection chain for protons. The beams produced for the LHC and various fixed target experiments cover a very large parameter space. Over the Long Shutdown 2 (LS2), the PSB was heavily upgraded as part of the LHC Injectors Upgrade (LIU) project. The low-level RF systems now drive the new Finemet-loaded cavities, control RF synchronisation for the new injection mechanism, and cope with the increased injection and extraction energies. The Finemet cavities provide exceptional flexibility, allowing an arbitrary distribution of voltage at different revolution frequency harmonics, but at the cost of significant broadband impedance. The new injection mechanism allows bunch-to-bucket multi-turn injection, which significantly reduces the amount of beam loss at the start of the cycle. The longitudinal beam production schema for each beam-type was developed based on simulations during LS2, and then adapted during the setting-up phase to suit the final operational configuration. This paper discusses the commissioning of the new LLRF, and the consequences of the LIU upgrades on the production of various beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK012  
About • Received ※ 25 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK013 Direct Impedance Measurement of the CERN PS Booster Finemet Cavities 2064
 
  • S.C.P. Albright, M.E. Angoletta, D. Barrientos, A. Findlay, M. Jaussi, J.C. Molendijk
    CERN, Meyrin, Switzerland
 
  Over CERN’s Long Shutdown 2, the conventional ferrite-loaded cavities of the PS Booster were replaced with wide-band Finemet-loaded cavities. The Finemet cavities bring many operational advantages, but also represent a significant broadband impedance source. The impedance is mitigated by servo loops, which suppress the induced voltage, reducing the impedance as seen by the beam. Accurately including the impedance of the cavity and the effect of the servoloops in longitudinal tracking simulations is essential to predict the performance with beam. This paper discusses the results of a measurement campaign, which is intended to give a direct measurement of the cavity impedance. Using the detected voltage and the measured beam profile, the cavity impedance can be inferred and used to improve beam dynamics modelling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK013  
About • Received ※ 26 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)