Status and Prospects for the Plasma-Driven Attosecond X-Ray (PAX) Experiment at FACET-II

Claudio Emma / SLAC National Accelerator Laborator IPAC, 15 June 2022, Bangkok, Thailand

Outline

- Context and Motivation
- PAX conceptual presentation
- PAX experimental realization at FACET-II
- Hardware installations and diagnostics for FACET-II experiment

Summary

Plasma-accelerators: recent highlights

Sub-% energy spread preservation

(a) Measured X-ray intensity (mm) 400 Driver ---> Plasma off Plasma on 130 (mm) Measured Electron Beam Profiles 00 Planar Undulate (pC MeV⁻¹) .0 Single-shot statistics. Plasma of Accel. gradient (peak): 1.28 GV/m Plasma on Transformer ratio: 1.26 (single shot) Chambe Plasma Source Electron Spectromete 0 density (I Energy-transfer efficiency: 39% Plasma on, drive (imaging scan) 0.16% 0.13% 5 mm 1 **FWHM** FWHM W. Wang et al., Nature, 595, 516-520 (2021) 50 Spectral 500 10 20 30 400 Energy (MeV) Wavelength (nm) 1000 1010 1020 1030 1040 1050 1060 1070 1080 990 Energy (MeV) 10² C. Lindstrom et al., PRL 126, 014801 (2021) Data Fit Simulation Day-long operation stability 10 FEL spectrun Grating OS trace Energy (nJ) 100 Run time (hours) 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 26:00 400 10-1 ja 200 Undulators 10-2 Energy spect R. Pompili et al., Nature, 605, pages659-662 (2022) 10⁻³ 2 3 5 6 7 8 9 10 11 12 13 4 80 000 100 000 z (m) Consecutive shots A. Maier et al., PRX 10, 031039 (2020)

Plasma accelerators are now making beams with the quality and stability needed for applications

IPAC, June 15, 2022

C. Emma

Status and Prospects for the PAX Experiment at FACET-II

FEL gain demonstrations

3

Attosecond pulses with plasma-driven FELs

- 50-100as X-rays with µJ-energy are desirable for studying e- motion in atoms on its natural timescale.
- HHG sources can reach 40 as length with pJ-level energy.
- XFELs reach μ J energy with min pulse length limited to ~ 200as by emittance $(t_{min} \sim \varepsilon^{5/6})$
- An attosecond photon source based on plasma-driven e-beams can enable new capabilities by combining the benefits of HHG sources & XFELs.

PAX combines the benefits of HHG (short pulses) with power and flexibility of XFELs

PAX: a Plasma-driven Attosecond X-ray Source

Unique properties of plasma accelerated beams can add new capabilities to future light sources

SLAC

IPAC, June 15, 2022

Status and Prospects for the PAX Experiment at FACET-II

PAX source properties

- 5-10x higher peak power compared to attosecond XFELs
- Pulse energy stability 10x better than attosecond XFELs due to coherent emission process **not** SASE starting from noise
- Tunable pulse length/peak power depending on experiment

C. Emma et al., APL Photonics, 6, 076107 (2021)

Unique source properties and soft tolerances due to high peak current, pre-bunching and short undulator length

FACET-II operational parameters

- 2nC, 10 GeV, 10 um emittance
- Single bunch, two bunch, low energy spread operating mode
 - Ultra-high peak current (10s-100s kA)

Description of Scope	Units	Threshold KPP	Objective KPP
Beam Energy	[GeV]	9	10
Bunch Charge (e-)	[nC]	0.1	2
Normalized Emittance in S19 (e-)	[µm]	50	20
Bunch Length (e-)	[µm]	100	20

FACET-II has met objective KPPs. Work continues to commission new operation modes, optimize beam quality

FACET-II operational parameters

- 2nC, 10 GeV, 10 um emittance
- Single bunch, two bunch, low energy spread operating mode
 - Ultra-high peak current (10s-100s kA)

- Bright gamma ray generation via beam filamentation
 - Strong field QED
 - Plasma source design/optimization
- Ultra-bright beam generation (plasma injector)
- Advanced diagnostics, including AI/ML methods
 - Plasma-driven X-ray source development

...

FACET-II has met objective KPPs. Work continues to commission new operation modes, optimize beam quality

FACET-II provides ideal test-bed for PAX staged demonstration

FACET-II provides ideal test-bed for PAX staged demonstration

SLAC

IPAC, June 15, 2022

C. Emma

Status and Prospects for the PAX Experiment at FACET-II

XUV Spectrometer and radiation detection for PAX at FACET-II

Radiation setup detects broadband spectral content to map bunching factor of fully-compressed e-beam

SLAC

Experimental installation plans

- Chicane magnets + bypass line are conceptually designed
- XUV detection setup currently undergoing bench testing
- Detailed design and installation engineering under way
- Planned spectrometer installation for Fall 2022 and chicane for summer 2023

XUV spectrometer testing

Chicane location in beamline

New Chicane

PAX chicane + bypass line initial design completed. PAX XUV spectrometer system currently commissioning

SLAC

IPAC, June 15, 2022

C. Emma

Status and Prospects for the PAX Experiment at FACET-II

Summary

- Plasma accelerators offer beams with unique properties for light source applications.
- PAX leverages these to provide a flexible, high power X-ray source which can enable experiments in attosecond science.
- Staged demonstration experiment is underway at FACET-II. Currently testing diagnostics and planning upcoming hardware installations.
- First science targets sub-fs e-beam compression and XUV generation via CSR. Final realization will use plasma injector for as-beam generation and push to shorter wavelengths.
- Long term vision is to outline a path forward dedicated to plasma-driven attosecond science experiments.
- Strengthening dialogue with user community is important to connect the best-served experiments to plasma-driven sources

PAX is moving steadily from concept to experimental realization

Collaborators

- SLAC: R. Hessami, M.J. Hogan, K. Larsen, R. Robles, D. Storey, G. White, X. Xu, A. Marinelli
- UCLA: A. Fisher, P. Musumeci

Funding Sources

This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC0276SF00515. This work was also partially supported by the DOE under Grant No. DE-SC0009914. The OSIRIS simulations were performed on the National Energy Research Scientific Computing Center (NERSC).

Thank you for your attention

