

The European Energy Recovery Linac Roadmap

Andrew Hutton, Jefferson Lab,

Max Klein, Liverpool University,

Bettina Kuske, Helmholtz-Zentrum Berlin for the ERL-panel Team

IPAC 2022, Bangkok, Thailand

Since **2005** the CERN council mandates the "European Strategy for Particle Physics" *

"... a broad consultation of the grass-roots particle physics community, actively soliciting the opinions of physicists from around the world, ... in close coordination with similar processes in the US and Japan in order to ensure ... optimal use of resources globally."

2019/2020 update: CERN Council mandates the Laboratory Directors Group (LDG) to define and maintain a prioritised accelerator R&D roadmap towards future large-scale facilities for particle physics.

LDG defined 5 areas of interest:

- High-field magnets
- High-gradient RF structures and systems Plasma
- High-gradient plasma and laser accelerators
- Bright muon beams and muon collider
- Energy-recovery linacs (chair: Max Klein, U-Liverpool), e+e- collider subpanel (chair: Andrew Hutton, JLab)

18 Panel members: Deepa Angal-Kalinin, Kurt Aulenbacher, Alex Bogacz, Georg Hoffstaetter, Andrew Hutton (Co-Chair), Erk Jensen, Walid Kaabi, Max Klein (Chair), Bettina Kuske, Frank Marhauser, Dmitry Kayran, Jens Knobloch, Olga Tanaka, Norbert Pietralla, Cristina Vaccarezza, Nikolay Vinokurov, Peter Williams and Frank Zimmermann. The editor was Max Bruker. In addition, numerous guest authors contributed to their specific fields of experience.

ERL Symposium, June 4th, 2021:

joint consultation with the particle and accelerator physics communities, discussed the basis, status, impact, technology, and prospects of the field of ERLs. <u>https://indico.cern.ch/event/1040671/</u>

*: <u>https://europeanstrategy.cern/european-strategy-for-particle-physics</u>

Underlying conviction: ERLs represent a unique, high-luminosity, green accelerator concept for

- energy-frontier HEP colliders
- for major developments in lower-energy particle and nuclear physics ٠
- and for industrial applications ٠

ERLS are 'green(er)':

- recycle the kinetic energy of the used beam (significantly reduced power consumption)
- utilize the high brightness of modern injectors (avoid emittance blow up)
- dump the beam at injection energy (less radiation hazard) •

This broad effort, conducted in 2021, resulted in a document "European Strategy for Particle Physics" published in Jan. 2022: http://arxiv.org/abs/2201.07895 or https://doi.org/10.23731/CYRM-2022-001

Executive summary (ERL)*: "The panel notes with much interest that the ERL technology is close to high-current and high energy application ... with the stunning potential to revolutionise particle, nuclear and applied physics, as well as key industry areas."

*: European Strategy for Particle Physics - Accelerator R&D Roadmap, N. Mounet (ed.), CERN Yellow Reports: Monographs, CERN-2022-001 (CERN, Geneva, 2022), https://doi.org/10.23731/CYRM-2022-001 Extended ERL, covering all of the panels findings - to be published soon "The European ERL Roadmap", Bettina Kuske, IPAC 2022 3

The layout of the talk:

- Brief introduction to ERL
- Next generation accelerators for HEP
- European operational facilities
- Power consumption conventional versus ERL colliders

4

- Key challenges ahead and the Roadmap's strategy
- Status

Energy Recovery - a technique in accelerator construction

 $\Delta L = 1/2 \lambda_{RF}$: electrons are decelerated on second turn in linac and deposit their energy back into the RF cavities to accelerate further bunches.

ERL efficiency^{*} :

$$\frac{P_b}{P_{RF}} = \frac{I_b E_f}{I_b E_{inj} + P_{ramp \, up(+losses)}}$$

As the main accelerating energy is recovered...

ERLs are efficient for high beam power:

- high energy (multi-turn) ٠
- high current ٠

Landscape of past, present and proposed ERL projects

*: Merminga et al., HIGH-CURRENT ENERGY-RECOVERING ELECTRON LINACS, doi: 10.1146/annurev.nucl.53.041002.110456

ERL EFFICIENCY

ERL efficiency^{*} :

$$\frac{P_b}{P_{RF}} = \frac{I_b E_f}{I_b E_{inj} + P_{ramp \, up(+losses)}}$$

ERLs are efficient for high beam power:

- high energy (multi-turn) ٠
- high current •

Efficiency of recovery process \Leftrightarrow SRF technology

cavity	R _s surface resistance	Q ₀ quality factor	Frequency
Normal conducting	1	$\sim 10^{4}$	<500MHz
Super conducting	10^{-6}	> 10 ¹⁰	0.7-1.3 GHz

Landscape of past, present and proposed ERL projects

*: Merminga et al., HIGH-CURRENT ENERGY-RECOVERING ELECTRON LINACS, doi: 10.1146/annurev.nucl.53.041002.110456

"The European ERL Roadmap", Bettina Kuske, IPAC 2022

NEXT-GENERATION HEP COLLIDERS

NEXT-GENERATION HEP (COLLIDERS		Landscape of past, present and proposed ERL projects
three-turn ERL LHeC: provides an intense, high-energy electron beam collisions with the LHC bear 50 GeV, 20/50mA 4.5km racetrack (2012, 2020)	FCC-eh: provides an intense, high-energy electron beam for collisions with the FCC beam. 60 GeV, 20mA 9km racetrack for (2018) n.	4-turn ERL CERC: ERL-version of FCC-ee 182.5 GeV, 1.01mA 100km, 4-turn circular (2020)	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$
single-pass El	RL,	Common domand:	
twin-axis cav	ities	SC cavities to tolera	ate 10 - 400 mA current load
EXMP – Muon source Based on electron-	ERLC ERL-version of ILC	Two European med	ium-scale facilities with exactly that goal:
200 GeV, 200mA	125GeV, 44.7mA (2021)	PERLE, IJCLab, Orsay, I 3 turn ERL	France bERLinPro, HZB, Berlin, Germany single-pass ERL

Goal: 50MeV, 100mA, 5MW

Goal: 500MeV, 20mA, 10MW

EUROPEAN OPERATIONAL FACILITIES

PERLE, IJCLab, Orsay, France

Large international **Collaboration** Test-bed for future high-power ERL facilities, specifically LHeC and FCC-ee technologies, **in preparation**

- Electron source to booster optimization meets specifications
- Merger studies
- First Nb 801.58MHz 5-cell elliptical cavity fabricated at Jlab with Q_0 =3 10¹⁰
- HOM-damping studies ongoing

Test facility SRF/ERL technology

Basically operational, the warm machine, and all facilities ready:

- => most rapidly accessible facility
- 10mA SRF gun commissioning 2022/23
 - Assembly of cold string
 - HP coupler successfully tested
 - Extension to 100mA feasible in the same SRF module
- Ongoing R&D programs (UED application, industry coupler tests)
- Needs linac for recirculation

bERLinPro (SEALAB)

Berlin, Germany

HZB

EUROPEAN OPERATIONAL FACILITIES

- Electron source to booster optimization meets specifications
- Merger studies
- First Nb 801.58MHz 5-cell elliptical cavity fabricated at Jlab with Q₀=3 10¹⁰
- HOM-damping studies ongoing

- HP coupler successfully tested
- Extension to 100mA feasible in the same SRF module
- Ongoing R&D programs (UED application, industry coupler tests)
- Needs linac for recirculation

HZB

CERC (Circular Energy Recovery Collider) FCC-ee parameters : 100km, 182 GeV/beam V. Litvinenko, T. Roser, M. Llatas Physics Letter B 804 (2020) 135394 ERLC (Energy Recovery Linear Collider) ILC parameters : 125 GeV/beam V. Telnov arXiv:2105.11015v4 [physics.acc-ph] 28 Nov 2021

e+e- sub-Panel (-> report in roadmap)

- Not complete, no fully coherent parameter set yet
- Problems identified & updates exist
- no showstopper so far

Both promise luminosities 10²-10³ higher than FCC / ILC proposals at comparable energy consumption

Circular ERL: Lower restrictions on beam-beam tune shift, beam gets dumped after collision

Linear ERLS: Much higher current: 44.7mA ⇔ 0.021mA

Conventional Colliders

		power for acceleration
		RF: 60%, ~145MW
FCC*	Storage ring Phy	100MW synchrotron radiation
II C**	Linear	AC-power main linac: 106MW
	accelerator	"accelerate and dump"

Assuming 85% RF efficiency in both cases

* F. Zimmermann, FCC Week 2019 Brussels, 24 June 2019

** https://linearcollider.org/files/images/pdf/Executive%20Summary.pdf

ERL based Colliders

	power for acceleration
CERC [#]	Cryogenics: 56%, ~153MW
Technology	2K, Q = 2x10 ¹⁰ , BNL-ERL 5-cell cavity, +20% thermal shield and power coupler cooling
ERLC##	Cryogenics: 110MW
	0.19 duty cycle to cope with RF heat load in cavities (44.7mA)
# Physics Letter B 80	4 (2020) 135394

Physics Letter B 804 (2020) 135394
arXiv:2105.11015v4 [physics.acc-ph] 28 Nov 2021

Total power consumption prediction for future HEP machines: ~300MW >50% cryo & RF >50% of cryo due to RF heat load

For more details:

*** Kaoru Yokoya: "Energy Recovery Versions of ILC and FCCee", ILC Camp, 2021/09/24, https://agenda.linearcollider.org/event/9312/contributions/48614/attachments/37188/58228/ERconceptForColliders-v3.pdf Bettina Kuske: "Sustainability Aspects of Energy Recovery Linacs", https://engage.aps.org/dpb/meetings/meeting-presentations

"The European ERL Roadmap", Bettina Kuske, IPAC 2022

KEY CHALLENGES

 \geq

Key challenges to achieving GW-level of beam power (high energy / high current):

SRF cavity	r and cryomodule development – sustainability centered
•	much development ongoing worldwide (independent of ERLs)
•	ERLs: system design compatible with high beam current / HOM excitation
•	enhanced cryogenic efficiency, reduced RF power and cryogenic load due to RF losses
	\Rightarrow operation at 4.4K
	\Rightarrow higher quality factors (new cavity material: Nb ₃ Sn, NbN, NbTiN)
	\Rightarrow handling of transients and microphonic detuning (Fast Reactive Tuners)

- \Rightarrow HOM power absorbers at the highest possible temperature
- > multiturn studies: replace expensive linac with cheaper transport beamlines
- reliable simulation software: experimental benchmarking (CSR, BBU, longitudinal matching, S2E)
- diagnostics: separation of beams on successive turns, high beam power, non-Gaussian bunch profiles, high dynamic range
- High current: electron gun (thermionic, DC, RF and SRF guns)
 - current: reliably 20 mA to 100 mA
 - emittance: <1 mm mrad to 5 mm mrad
 - charge: 77 pC to 500 pC

research proceeding worldwide (bERLinPro, BINP, BNL, Daresbury, PERLE) re-enforced by roadmap process

Addressed by ERL Roadmap

European Accelerator R&D strategy:

Progress is necessarily based on the many medium-scale operational facilities around the world

High current – up to 100mA (gun & load to SRF cavities)

• bERLinPro@HZB, BINP (NC, low frequency), CeC-EIC@BNL, cERL@KEK

10MW beam power in multi-pass configuration

• PERLE@IJCLab Orsay, broad int. collaboration

Test of Fast Reactive Tuners:

• bERLinPro@HZB

HOM damping:

bERLinPro@HZB, PERLE@IJCLab Orsay, CeC-EIC@BNL (required, if I > 1mA)

Energy increase to 10GeV in 5 passes (=> SR)

• ER@CEBAF, Jlab (&STFC Daresbury, U-Lancaster, U-Brussels)

Operational experience:

• S-DALINAC (TU Darmstadt, Germany), MESA (U Mainz, Germany), CBETA (U Cornell and BNL, US), cERL (KEK, Japan), and the NC Recuperator facility (BINP Novosibirsk, Russia).

Roadmap proposes funding for activities in the next five to ten years that lead to multiple options for future HEP Colliders

CURRENT STATUS

• The roadmap has been endorsed

by CERN Council and the group of large HEP laboratories (LDG)

- It provides a reference for the "ERL implementation steering group"
- Intense work is continuing at Berlin and Orsay and around the world

International ERL workshop :

3-6 October 2022 in person at Cornell University <u>https://indico.classe.cornell.edu/event/2018/</u>

Frederick Bordry*: "There will be no future large-scale science project without an energy management component, an incentive for energy efficiency and energy recovery among the major objectives".

Thank you for your attention

* CERN's Director for Accelerators and Technology 2014-2021

"The European ERL Roadmap", Bettina Kuske, IPAC 2022

