

High-Flux Dual X-Ray and THz Radiation Source Based on Energy Recovery Linacs

Drebot Illya

Brilliant source of X-rays based on Sustainable and innOvative accelerators

BRIXSINO HIGH-FLUX DUAL X-RAY AND THZ RADIATION SOURCE BASED ON ENERGY RECOVERY LINACS

Two main working mode: As ERL for light source at electrons energy ~45 MeV And double acceleration up to 80 MeV

Light sources installed in the arc : X rays based on Compton Scattering And FEL Oscillator for THz radiation

BriXSinO

An ERL injector (or merger) has typically 3 major objectives:

High brightness \rightarrow i.e. A high beam qualities for experiments

Keeping in mind this concepts we developed the following high performing beam-line

BriXSinO

sources (FEL, ICS) or Luminosity in colliders, ...

(3)

Low injection energy

 \rightarrow It is the energy that will be never be recovered

High average beam current \rightarrow e.g. high flux light

 \rightarrow It the energy going into the dumper.

BriXSinO's injector devices

16.06.2022

BriXSinO

Drebot Illya

Brixsing The Injector Superconducting Booster - ISB

ISB is a **full beam-loading** cryomodule that boosts beam energy up to 5 MeV for the injection in the ERL section

- Three 2-cell SC cavities, 1.3 GHz
 - Acc. gradient up to 7.5 MV/m CW
 - Quality factor at 2e10, 2.0 K
 - Coaxial Blade fast tuner
- **Double, symmetrical power coupler** to minimize transversal kicks to the beam
 - 10 kW SSA, one each cavity
- Coaxial HOM adsorbers between cavities
 - Silicon Carbide ring, actively cooled

ISB cavities RF power chain scheme

IBS Fixed Target Experiment Dogleg and matching section from ISB to ESM ESM

16.06.2022 Courtesy D. Sertore, R. Paparella

BriXSinO's injector the BD

An innovative injector in more aspects:

Space-charge regime : emit-oscillation tuned for a good compensation

The two bunchers perform both compression & acc.

BD *@* injector exit:

- 1mm envelope size
- 1mm sig_z size
- 1um xy norm. emit
- A very low energy spread

 \rightarrow Very good to enter into the disp. path

It is a standard dogleg but the BD is complex by the space charge. It is used the Genetic Algorithm GIOTTO [IPAC 2016 WEPOY039] to solve the BD.

🕈 Brixsing The ERL Superconducting Module - ESM 🌺 🕯

Parameter	Value
Type Of Accelerating Structure	Standing Wave
Accelerating Mode	TM ₀₁₀ p-mode
Fundamental Frequency [MHz]	1300
Design Gradient [MV/m]	16.5
Intrinsic Quality Factor Q ₀	2·10 ¹⁰
Loaded Quality Factor Q _{EXT}	3.25·10 ⁷
Active Length [m]	0.81
Cell to cell coupling [%]	2.2
R/Q [Ohm]	774
Geometric Factor G [Ohm]	271
E _{peak} /E _{acc}	2.1
B _{neak} /E _{acc} [mT/MV/m]	4.2
Cavity Bandwidth df=f/(2·Q _{EXT}) [Hz] HWHM	20
Total longitudinal loss factor k _{II} [V/pC], s = 0.6 mm	14.7
Longitudinal loss factor, [V/pC], non fundamental, s = 0.6 mm	13.1
Transverse loss factor [V/pC], s = 0.6 mm	13.7
16.06.2022	

The **ESM is a two-way, energy recovery cryomodule** boosting 5 mA beam energy to 45 MeV.

Spent, **counter-propagating beam** is dimmed to 5 MeV for the low-energy dump

Three 7-cells SC cavities

- Zero nominal beam loading
- High Q to minimize cryogenic load
- RF chain design driven by 20 Hz_{rms} residual microphonics
- Several common technical solutions shared by ESM and ISB vessels
 - Cryogenic piping and structures layout
 - Inter-cavity HOM adsorbers
- Re-acceleration at lower current by phase matching
 - Beam-to-RF phase tuning section in the loop
- Courtesy D. Sertore, R. Paparella

Cryogenics

The cryogenic plant of the BriXSinO complex will integrate the central LASA plant and provide support to:

- Controlled cool-down and warm-up of cold masses
- Stable stand-by cryogenic configurations for long stops at a safe intermediate temperature between beam runs
- Safe cold operations at peak cavity performances

HOM thermal power is exchanged **to liquid nitrogen coolant** via pressurized helium gas stream

• Larger heat load dynamic range

BriXSinO

	IS	В	ES	М	Total	Total
Intercepts	Static	Dyn.	Static	Dyn.	Static	Total
	W	W	W	W	W	W
2.0 K	5	4	5	36	10	50
4.5 K	48	12	43	6	91	109
80 K	136	240	128	210	264	714

Expected cryogenic BriXSinO heat loads

TerRa@BriXSino: FEL oscillator for TeraHertz production

TU and	
tuned	at the
same λ	.=20 un

IO tuned at λ=35 μm

TU and IO tuned at the same $\lambda = 35 \mu m$

Growth of the radiation vs number of round trips (a) L_w= 4m (only IO), (b) L_w=1.75 m (TU&IO)

Wavelength	20 µm	20 µm	$35 \ \mu m$	$35~\mu m$
Undulator length	1.75 m (only IO)	4 m (TU&IO)	1.75 m (only IO)	4 m (TU&IO)
Single shot IC energy	84 μJ	420 μJ	250 μJ	420 μJ
Single shot EC energy	3.36 µJ	16.8 µJ	10 µJ	17 μJ
Average power	$0.156 \ \rm kW$	0.78 kW	0.46 kW	0.8 kW
Bandwidth	0.65~%	2.5%	1.85%	4.2~%
Size	2 mm	2.6 mm	2.4 mm	2.8 mm
Divergence	2.8 mrad	4 mrad	4.2 mrad	5 mrad
Pulse rms length	$635 \ \mu m$	830 μm	749 μm	$1000 \mu m$
Self coherence rms length	755 μm	1330 µm	800 µm	1300 µm
Mutual coherence rms length	700 µm	1000 µm	600 µm	1000 µm
Transverse coherence rms length	1.48 mm	2.98 mm	2.42 mm	4. mm

Characteristics of the radiation at λ = 20 µm and λ = 35 µm. IC: intra-cavity, EC: extra-cavity. Round trip losses=7%, extraction efficiency 4%. Repetition rate= 46.4 MHz

BriXSino Production of two color terahertz radiation

Characteristics of the two color radiation. IC: intra-cavity, EC: extra-cavity.

Extraction efficiency 4%. Repetition rate = 46.4 MHz.

Undulator	10	ΤU	10	ΤU
Electron energy	40 M eV	40 M eV	20 M eV	20 M eV
Wavelength	20 µm	35 µm	40 µm	50 µm
Single shot IC energy	84 µJ	305 µ J	340 µJ	46 µJ
Single shot EC energy	3.36 µJ	12.2 µJ	13.6 µJ	1.84 µJ
Average power	0.156 kW	0.6 kW	0.63 kW	0.085 kW
Bandwidth	0.65%	0.7%	0.49%	0.46% 0.5%
Size	2 mm	2.5 mm	2.5 mm	2.2 mm
Divergence	2.8 mrad	3.8 mrad	5 mrad	6.3 mrad
Pulse rms length	635 µ <i>m</i>	830 µ <i>m</i>	720 µ <i>m</i>	1200µ <i>m</i>
Self coherence rms length	755 µm	1000 µm	1300 µm	1500 µm
Mutual coherence rms length	700 µm	900 µm	1000 µm	1200 µm
Transverse coherence rms length	1.48 mm	2.63 mm	2.44 mm	2.9 mm

IO tuned at λ =20 µm and TU tuned at λ =35 µm for E_e=40 MeV IO tuned at λ =40 µm and TU tuned at λ =50 µm for E₂=25 MeV

Power

s(mm)

Growth of radiation vs number of round trips

Spectrum

(b)

35

(d)

P(W)

Submitted in NIM

BriXSinO Start to end simulation

Electron beam Parameters

Simulation in ASTRA code by A. Bacci

Beam at IP

Tracking in code Elegant

deceleration

X-ray at 10 m at 10m after IP in θ =0.0048 $\sigma_{\rm x}$ =0.02396 [m]; $\sigma_{\rm v}$ =0.021753 [m]

	,												
Electrons mean energy $[MeV]$	4.28257e+01												
Bunch charge $[C]$	1.00000e-10		bandwith	0.060921 for (0-0.00492								L
Bunch length rms, FWHM $[\mu m]$	2.29571e+03, 5.11277e+00		full flux=1.47	e+04; Flux in (θ =2.59e+03			E	3W=0.05	0924 for	<i>θ</i> =0.00	41; Flux	ز i
Nominal normalized ϵ_{nx} , ϵ_{ny} [mm.mrad]	1.73224e+00, 2.19305e+00	6000					-			peak	of spec	tr=33.43	3
Nominal relative energy spread $\sigma_e \%$	2.45647e-01	suc						≳ 70		mean	or spec	tr=31.00	•••
Focal spot size $\sigma_x, \sigma_y \ \mu m$	2.73712e+01, 3.23179e+01	2 4000						ğ					
Laser Parameters		a						- 60 					
Laser pulse energy (J)	2.7e-03	<u>ළී</u> 2000					_	e B					
Laser wavelength (nm)	1030												
Laser pulse length [psec]	2												
Laser focal spot size w0x RMS $[\mu m]$	40	0.15				/		ja 10					
Laser focal spot size w0y RMS $[\mu m]$	80							90 JU					
Laser papameter $\alpha_0 = 6.8 * (\lambda_{las}/W0) * \sqrt{\frac{U_L(J)}{\sigma_t(ps)}}$	8.57811e-03	0.1						20 scatte					
Collision angle [deg]	7	рц Гр	_					ofs					Ϊ
γ -ray Photon beam Param	neters	<u>අ</u> 0.05						ັ້ວ 10					
Nominal # photons per shot N_{ph_tot}	1.46860e + 04							<u>d</u>					
Source rms size $\sigma_{\gamma x}$, $\sigma_{\gamma y}$ [μm] at IP	3.43587e+01, 2.54566e+01	0	0.002 0.004	0.006	0.009	0.01	0.012		22	24	26	20	
Rad. pulse length $\sigma_{\gamma z} [psec]$	3.17766e+00	U	0.002 0.004	Theta	0.008	0.01	0.012	20	22	24 nho	20 itons en	20 erav (Ke	<u>م</u> رد
				motu						pho		5.99 (HC	÷,

Start to end simulation

16.06.2022

Drebot Illya

Conclusion

BriXSinO

LASA aerial view and rendering of the building

BriXSinO TDR: https://marix.mi.infn.it/brixsino-docs/

Articles:

Multi-Pass Free Electron Laser Assisted Spectral and Imaging Applications in the Terahertz/Far-IR Range Using the Future Superconducting Electron Source BriXSinO

C. Koral, et al. Front. Phys., Vol.10 (2022)

Two-Color TeraHertz Radiation by a Multi-Pass FEL Oscillator

M. Opromolla, et al. Appl. Sci., Vol.11 (2021)

A new method for spatial mode shifting of stabilized optical cavities for the generation of dual-color X-rays

E. Suerra, et al. Nucl. Instrum. Methods Phys. Res. A, Vol.1019 (2021) Submitted:

High brilliance Free-Electron Laser Oscillator operating at multi-MegaHertz repetition rate in the short-TeraHertz emission range

V. Petrillo, et al.Nucl. Instrum. Methods Phys. Res. A, (2022) Also at IPAC '22 posters: WEPOS042; MOPOTK016 and THPOPT025

Start to end simulation

Forward direction

Backward direction ERL case

2) Backward direction MariX test case

IN	FN BriXSinO	BriXSin	0		
	Rep rate ~100 MH	Z Two-pass Linac	HE dogleg	CS HIN FRANCE	
	Injector	Quadrupoles	RF Cavities	^{10]} es	
	Buncher Photo Cathode	RF Cavities	36 m	Parameter Energy (MeV) Bunch charge (pC) Repetition rate (GHz for CW operation) Average Current (mA) Beam power @ dump (W) $n_{=, GH}$ (mm mrad) energy spread (%) Bunch separation (`s) Beam energy fluctuation (%) Pointing jitter (`m)	Value < 80 50 - 200 0.9286 <5 400 1.0 < 0.2 > 1 < 0.2 50.
	16.06.2022	Drobot Illuo			2

1.1 Sustainability of electron accelerators: BriXSinO's way

Table 1.1: A Comparison concerning efficiency and sustainability among Plasma Linacs (a), RT-Linacs (b), SC-RF Linacs (c), ERLs (d), Storage Rings (e), High power Cyclotrons (f). (*limited by beam dump **power emitted in synchrotron radiation *** 10 h life-time (360 MJ / 36,000 s))

ACCELERATOR	Energy	Average	Beam power	AC power	Efficiency	Beam availability	True
	Energy	current			b-t-p	(beam power)	efficiency
EuPRAXIA@SPARC_LAB (a)	5 GeV	0.3 nA	1.5 W	2 MW	$7.5 imes 10^{-7}$	100% (1.5 W)	$7.5 imes 10^{-7}$
BELLA (a)	7.8 GeV	5 pA	40 mW	200 kW	$2.0 imes 10^{-7}$	100% (40 mW)	$2.0 imes 10^{-7}$
STAR (b)	150 MeV	100 nA	15 W	400 kW	$3.8 imes 10^{-5}$	100% (15 W)	$3.8 imes 10^{-5}$
MariX (c)	3.8 GeV	50 µA	190 kW	17 MW	1.1%	100% (190 kW)	1.1%
Euro XFEL (c)	19 GeV	32 µA	608 kW	17.8 MW	3.4%	100% (608 kW)	3.4%
BriXSinO (d)	45 MeV	5 mA	225 kW	450 kW	50%	10% (22 kW)*	4.9%
Elettra (e)	2 GeV	310 mA	620 MW	4.0 MW	n.a.	0.015% (90 kW)**	2.3%
LHC (e)	7 TeV	540 mA	3.8 TW	120 MW	n.a.	$3.2 \times 10^{-9} (10 \text{kW})^{***}$	$\sim 10^{-4}$
PSI Cyclotron (f)	590 MeV	2.4 mA	1.4 MW	10 MW	14%	100% (1.4 MW)	14%

The energy angular correlation - tunability

BriXSinO

E_{phot}=34 keV

The energy angular correlation - tunability

BriXSinO

E_{phot}=34 keV

E₀=43 MeV

The energy angular correlation - tunability

BriXSinO

E_{phot}=34 keV

The energy angular correlation - tunability

BriXSinO

E_o=43 MeV

16.06.2022

The energy angular correlation - tunability

BriXSinO

E_{phot}=34 keV

The energy angular correlation - tunability

BriXSinO

E_{phot}=34 keV

The energy angular correlation - tunability

BriXSinO

The energy angular correlation - tunability

BriXSinO

E_{phot}=34 keV

Why we so like Compton back scattering? We get X-ray with given polarization linear or circular.

(19.5 MeV, linear)

15000

8000 (10 MeV, linear)

6000

4000

presented by Tsunehiko OMORI (KEK)

on behalf of Cavity-Compton collaboration

ATF TB meeting@KEK 28/May/2006

(2 MeV, linear)

Ħ

Two colour X-ray source

Two colour X-ray source

