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Abstract 
The radiation field of a particle which suddenly appears 

in an ideal waveguide and moves on a helical trajectory 
under the influence of external magnetic fields is 
calculated. The shape and character of the front of the 
propagating wave is determined.  

INTRODUCTION 
A combination of a waveguide and a helical undulator 

transforms the helical undulator radiation spectrum from 
continuous to discrete and thus improves the characteristics 
of its radiation significantly [1]. Usually, the stationary 
motion of a particle in an infinite rectangular [2-4] or 
circular [1, 5-9] waveguide is considered, which ignores 
the injection phenomenon, i.e. the instantaneous 
appearance of a particle at a certain point in the waveguide 
(some aspects of this problem are considered in [10-11]). 
In the present work, the problem of the stationary motion 
of a point particle with a charge varying with time and 
performing a helical motion in an infinite ideal cylindrical 
waveguide is considered. On this basis, the problem of a 
particle that suddenly appears at a certain moment of time 
and moves along a helical trajectory in the same waveguide 
is solved. In conclusion, a formula is derived that describes 
the gradual appearance of a bunch of charged particles, 
which simulates the process of its injection. 

CHARGE VARYING IN TIME 
Consider a relativistic point charge with longitudinal 

velocity V and charge 𝑄 𝑡  , with an arbitrary time 
dependence, moving in a homogeneous waveguide along a 
helical trajectory, with a revolution frequency 𝜔  . The 
waveguide is assumed to be circular with a radius b and has 
perfectly conducting walls. The charge density 𝜌  and 
current 𝚥 are given in the forms:  𝜌(𝑟,𝜑, 𝑧, 𝑡) = 𝑞𝑄(𝑡) 𝛿(𝑟 − 𝑎)√𝑟𝑎 𝛿(𝜑 − 𝜔 𝑡)𝛿(𝑧 − 𝑉𝑡) 𝚥(𝑟,𝜑, 𝑧, 𝑡) = (𝜔 𝑎𝑒 + 𝑉𝑒 )𝜌(𝑟,𝜑, 𝑧, 𝑡)  (1) 

where 𝑒 , 𝑒  are unit vectors in cylindrical coordinates and 𝑎  is the radius of the particle orbit. q is the elementary 
charge. The radiation field is determined from the wave 
equations:  ∆ − �⃗� = 𝜇 ⃗ + 𝑐 ∇𝜌

∆ − �⃗� = −𝑟𝑜𝑡𝚥 (2) 

with the magnetic permeability of vacuum 𝜇 . 
In the time-frequency domain the electrical and 

magnetic fields are sought in the form of cylindrical mode 
compositions, which combine TM and TE harmonics: �⃗� = ∑ �⃗� + �⃗�,     (3) 

The longitudinal and transverse components of electric 
and magnetic harmonics are written in the form of 
expansion terms in Bessel functions of the first kind: 𝐸 = 𝑈 𝜓 , 𝜓 = 𝐽 𝑗 𝑒 ( )𝑒 ( ),𝐻 = 𝑐𝜀 𝑊 𝜓 ,  𝜓 = 𝐽 𝜈 𝑒 ( )𝑒 ( )ℇ⃗ = {ℇ ,ℇ , 0},    ℋ⃗ = {ℋ ,ℋ , 0}�⃗� = 𝐴 ℇ⃗ , �⃗� = 𝐷  ℋ⃗�⃗� = 𝐶 𝑐𝜀 𝑒 × ℇ⃗�⃗� = −𝐵 (𝑐𝜀 ) [𝑒 × ℋ⃗ ]ℋ⃗ = {ℋ ,ℋ , 0}�⃗� = 𝐷  ℋ⃗ℇ = 𝜕 𝜓𝜕𝑟 ,     ℇ = 𝑗 𝑛𝑟 𝜓  ℋ =  ,       ℋ = 𝑗  𝜓      (4) 

where 𝑗  and 𝜈  are the roots of the Bessel function and 
its derivative, respectively. The result of substituting (4) 
into (2) are second-order differential equations for the 
time-dependent amplitudes U, A, B, W, C and D: 𝑓(𝑔 )𝑋 + 𝑏 (2𝑗𝜔𝑋 − 𝑋 ) = Ϝ 𝑗𝐾 𝑄(𝑡) + 𝑅 𝑄 (𝑡) ,   𝑋 = 𝑈,  𝐴,  𝐵,  𝑊,  𝐶,  𝐷      (5) 
with 𝑓(𝑔 ) = 𝑐 (𝑔 + 𝑏 𝑘 ) − 𝑏 𝜔 = 𝑏 (𝜔 − 𝜔 ),  𝜔 = 𝑐 𝑔 𝑏⁄ + 𝑘 ,    (6) 𝑔 = 𝑗  for TM modes and 𝑔 = 𝜈  for TE modes. 
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Further in (5): Ϝ = −𝑞𝜇 𝑐2𝜋 𝐽 𝑗 𝑎𝑏𝐽 (𝑗 ),     
Ϝ = −𝑗𝑞𝜇 𝑐2𝜋 𝐽 (𝑗 𝑎 𝑏⁄ )𝑗 𝐽 (𝑗 ), 
Ϝ = −𝑞𝜇 𝑏𝑎𝑐 𝜔2𝜋 𝜈𝜈 − 𝑛 𝐽 (𝜈 𝑎 𝑏⁄ )𝐽 (𝜈 )𝐾 = 𝑐 𝑘 − 𝑉𝜔,            𝑅 = 𝑉 𝐾 = 𝑐 𝑗 − 𝑏 𝑛𝜔 𝜔,         𝑅 = 𝑏 𝑛𝜔  𝐾 = 𝜔,           𝑅 = −1 Ϝ = 𝑗 𝑞 2𝑎𝑐𝜔𝑏𝜀 𝜈𝜈 − 𝑛 𝐽 (𝜈 𝑎 𝑏⁄ )𝐽 (𝜈 ) ,  𝐾 = 1,        𝑅 = 0, Ϝ = 𝑗𝑞 2𝑐𝜀 𝑗 𝑉 − 𝑏 𝑘𝑛𝜔𝐽 (𝑗 ) 𝐽 (𝑗 𝑎 𝑏⁄ )𝑗 ,  𝐾 = 1,         𝑅 = 0, Ϝ = −𝑞 2𝑎𝑏𝑐𝑘𝜔𝜀 𝜈𝜈 − 𝑛 𝐽 (𝜈 𝑎 𝑏⁄ )𝐽 (𝜈 ) ,  𝐾 = 1,       𝑅 = 0  (7) 

Equation (5) is a second order differential equation. Its 
complete solution can be composed of a particular solution 
of an inhomogeneous equation and a general solution of a 
homogeneous equation (with zero right-hand side). The 
solution of the inhomogeneous equation (5) can be 
obtained by representing the amplitudes 𝑋  and function 
Q(t) through the images 𝑋  and 𝑄   of the Laplace 
transform in time: 𝑋 = 𝑋 𝑒 𝑑𝛼 ,   𝑄(𝑡) = 𝑄𝑒 𝑑𝛼    (8) 

After substitution one obtains: 𝑋 (𝛼) = Ϝ 𝑄(𝛼)𝑃 (𝛼),  𝑃 (𝛼) = 𝑗𝐾 − 𝛼𝑅 𝑓(𝑔 ) − 𝑏 (2𝑗𝜔𝛼 + 𝛼 )⁄     (9) 

The time dependence of the amplitude is determined 
using the inverse Laplace transform from the coordinate α 
to the time domain. For all six components, the solution 
has an identical form: 𝑋(𝑡) = Ϝ ℒ 𝑄(𝛼)𝑃 (𝛼) , 𝑋 = 𝑈,  𝐴,  𝐵,  𝑊,  𝐶,  𝐷  (10) 

An explicit solution can be obtained from (10) by 
substitution of the Laplace image 𝑄(𝛼)  by a specific 
function 𝑄(𝑡) of the time dependent function of a charge 
variation. 

RADIATION OF INSERTED PARTICLE 
Now consider the process of injection of a single point 

particle emerging at the time instant 𝑡 = 0 at the point 𝑟 =𝑎, 𝑧 = 0,𝜑 = 0 inside the waveguide and being drawn into 
motion along a helical trajectory by external magnetic 

fields. The phenomenon of the instantaneous appearance of 
a charged point particle is described by the introduction of 
a step function into the expressions (1) for the charges and 
currents instead of a function 𝑄(𝑡): 𝑄(𝑡) = 𝜒(𝑡), where 𝜒(𝑡) = 0  at 𝑡 < 0  and 𝜒(𝑡) = 1  at 𝑡 ≥ 0 . The Laplace 
image of a step function is: 𝜒(𝛼) = ℒ {𝜒(𝑡)} = 𝛼   (11) 

and the derivative of the step function at 𝑡 > 0 is zero, just 
as 𝑅 = 0 in (9). Therefore, from (10) we have: 𝑋 (𝑡) = 𝑗 Ϝ( ) 1 − 𝑒 𝑐𝑜𝑠(𝜔 𝑡) + 𝑗 𝑠𝑖𝑛(𝜔 𝑡)   (12) 

The first term in (12) coincides with the expression for 
the stationary solution in an infinite waveguide.  

The factor 𝑢 = 𝑏 𝑓(𝑔 )⁄  can be represented as a sum 
of two terms:  𝑢 = ( )( ) − ( )( ).   (13) 

On the other hand, 𝑢 = 𝑢 + 𝑢  with 𝑢 = ( )( ) − ( )( )𝑢 = ( ) − ( ) =   (14) 

where  𝑘 , = ± ( )( )   (15) 

are the roots of equation 𝑓(𝑔 ) = 0 with respect to 𝑘. 
Now (12) can be rewritten as:  𝑋 (𝑡) = 𝑗Ϝ 𝐾 𝑢 − 𝑒 𝑍(𝑘)𝑢   −𝑒 𝑍(𝑘)𝑢 + 𝑒 𝑍 (𝑘)  (16)  

with 𝑍(𝑘) = 𝑗Ϝ 𝐾 cos(𝜔 𝑡) + 𝑗 sin(𝜔 𝑡)   

and 𝑍 (𝑘) = 𝐴 (𝑘) cos(𝜔 𝑡) + 𝐵 (𝑘) sin(𝜔 𝑡)  (17)  
where (17) is a general solution of the homogeneous 
equation for the amplitudes (with zero right-hand side), 
which is given by 𝐺 = 𝑓(𝑔 )𝑋 + 𝑏 (2𝑗𝜔𝑋 − 𝑋 ) = 0  (18) 

with the so far undefined coefficients 𝐴 (𝑘) and 𝐵 (𝑘). 
The transition to the space-time domain is accomplished 

using the inverse Fourier transform versus 𝑘: 𝑋 (𝑡) = 𝑋( )(𝑡) + 𝑋( )(𝑡) + 𝑋( )(𝑡) + 𝑋( )(𝑡)  (19) 𝑋( )(𝑡) = 𝑗Ϝ 𝐾 𝑢 𝑒 ( )𝑑𝑘,   𝑋( )(𝑡) = 𝑍(𝑘)𝑢 𝑒 𝑑𝑘  𝑋( )(𝑡) = 𝑍(𝑘)𝑢 𝑒 𝑑𝑘,   𝑋( )(𝑡) = 𝑍 (𝑘)𝑒 𝑑𝑘 (20)
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The integrand of 𝑋( )(𝑡) is an analytic function on the 
entire complex plane 𝑘  and, with the exception of the 
points 𝑘 = 𝑘  and 𝑘 = 𝑘 , corresponding to two simple 
poles lying on the real axis. Its value (in the sense of the 
principal value) is determined by the residues of these 
poles in the usual way [5]. The integrand of 𝑋( )(𝑡) has the 
same poles, but it is not an analytic function. The result of 
the integration along the edges of the cuts emanating from 
the branch points 𝑘 = ±𝑗 𝑔 𝑏⁄  should also be added to its 
value as the contributions from the poles. Asymptotically 
this contribution can be calculated by the saddle point or 
stationary phase method [12]. It is easy to see, that the 
contribution from the poles to the integral 𝑋( )(𝑡) 
completely compensates the integral 𝑋( )(𝑡), and that the 
additional contribution of the integral 𝑋( )(𝑡) (calculated, 
for example, by the stationary phase method), are 
compensated by the appropriate selection of the amplitudes 𝐴 (𝑘) and 𝐵 (𝑘) in the integral 𝑋( )(𝑡) . Only the third 
term 𝑋( )(𝑡) in (20) remains nonzero. It does not contain 
poles, but its integrand is not an analytic function either. 
This integral  𝑋( )(𝑡) = Ϝ 𝐾 {cos(𝜔 𝑡) +                 𝑗 sin(𝜔 𝑡)} 𝑒 𝑑𝑘       (21) 

can be calculated explicitly. In particular, for the 
longitudinal electric component 𝐸  we have: 𝐸 = 𝑗𝑞 𝐽 𝑓 𝑒 𝑆(𝑦, 𝑡)     (22) 

Here 𝑆(𝑦, 𝑡) = 𝐴𝐽 (𝑓𝑢) − 𝑗[𝐵𝐽 (𝑓𝑢) − 𝐶𝐽 (𝑓𝑢)], 𝐴 = (𝑉𝑐𝑡 + 𝑐 𝑦 − 2𝑉 𝑦), 𝐵 = , 𝐶 = , 𝑢 = 𝑡 − 𝑦 ,𝑦 = 𝑧 𝑐⁄ , 𝑓 = 𝑗 𝑐 𝑏⁄     (23) 

and 𝐽𝑙(𝑥) (𝑙 = 0,  1,  2,  𝑛) are Bessel functions of the first 
kind. 

For the calculation the following relation [13] was used cos(𝑥𝑦) 𝑑𝑥 = 𝐽 𝑓 𝑡 − 𝑦 ,   0 < 𝑦 < 𝑏               0,           𝑏 < 𝑦 < ∞   (24) 

In contrast to the case of the homogeneous motion in an 
infinite waveguide, the waveguide is filled with energy as 
the particle travels into the waveguide in the case under 
consideration here. The front of the propagated wave is 
determined by the equality 𝑐𝑡 = 𝑧 . Note that the field 
component (22) tends to a finite limit at 𝑐𝑡 → 𝑧 . 

For the presence of radiation at a certain observation 
point 𝑟,𝜑, 𝑧  inside the waveguide, the principle of 
causality must be observed, which requires the following 
relations to be satisfied: 

+ = 𝑡,       𝑙 + 𝑙 cos𝛼 = 𝑧   (25) 
Here 𝑙  is the distance along the z axis, indicating the 

position of the particle at a certain moment of time 𝑡 < 𝑡, 
where t is the time at which its radiation reaches the point 
of observation 𝑟,𝜑, 𝑧. 𝑙  denotes the distance between the 
particle and the point of observation, 𝛼  is the angle 
between the line connecting the particle and the 
observation point and the axis of the waveguide. 
From (25) it follows: 𝑙 = ( ) ,     𝑙 = ( )  .  (26) 

In turn, from (26) it follows: If 𝑙 , > 0  
i) the forward radiation is concentrated in the region 𝑐𝑡 > 𝑧 > 𝑡𝑉,  
ii) the radiation is concentrated near the axis of the 

waveguide within the conical angle  𝛼 ≤ 𝑚𝑖𝑛 2 (1 − 𝑉 𝑐⁄ )⁄ , 1 −  (𝑧 𝑐𝑡⁄ )   (27) 

The frequency characteristics of the radiation can be 
determined by analysing the integrand in formula (21). For 
an arbitrary value of the function 𝑓(𝑗 ), it is a rapidly 
oscillating function, while with 𝑓(𝑗 ) = 0  the 
oscillations remain only in the phase and its modulus 
slowly varies with frequency. For this reason, its frequency 
distribution is characterized by sharp peaks at frequencies 
determined by equation 𝑓(𝑗 ) = 0 . Thus, the resonant 
frequencies remain the same as in the stationary motion of 
a particle in an infinite waveguide [7]. 

The derived formula (23) describes a strongly directed 
and narrow-band radiation. 

The process of the emergence and subsequent 
propagation of an arbitrary bunch of length 𝑡  can be 
described by a convolution of the expression for the field 
of a point particle (23) with the longitudinal distribution 
function 𝑓 (𝑡) in the bunch: 𝐸 (𝑡) = 𝑓 (𝑡 − 𝑡 )𝐸 (𝑡 )𝑑𝑡   (28) 
Here 𝑡 = 𝑡 for 𝑡 ≤ 𝑡  and 𝑡 = 𝑡  at 𝑡 > 𝑡 . 

For brevity, we derived an explicit expression only for 
the longitudinal electrical component (23).  The rest of the 
components can be calculated similarly using equations (7). 

CONCLUSION 
The results of this work make it possible to study the 

processes of emission of bunches in a helical undulator 
combined with a waveguide in all details, as they occur 
during injection, subsequent propagation, and after leaving 
the open end of the waveguide. They will contribute to the 
creation of mathematical models of the operation of an 
undulator-waveguide structure close to reality. 

The results related to the time-varying charge can also 
find application in case of particle loss due to scattering on 
the walls of the waveguide and scattering on molecules of 
the residual gas.  
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