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Abstract
The Bmad/Tao software toolkit has been extended to esti-

mate the rate of radiative spin depolarization in 𝑒+-𝑒− stor-
age rings. First estimates are made using the SLIM algo-
rithm of linearized spin-orbit (s-o) motion. The extension
implements the effects on s-o motion of stochastic photon
emission using a Monte-Carlo tracking algorithm. Spins are
tracked in 3-D along particle trajectories with the aid of Tay-
lor expansions of quaternions provided by the Polymorphic
Tracking Code (PTC). The efficiency of long-term track-
ing is guaranteed by the use of a sectioning technique that
was exploited in previous-generation software (e.g. SLICK-
TRACK, SITROS). Sectioning is the construction of the
deterministic s-o maps for sections between the dipoles dur-
ing the initialization phase. Maps can be reused during the
tracking. In a simulation for a realistic storage ring, the com-
putational cost of initial map construction is amortized by
the multi-turn tracking computational cost. The 1st-order
terms in the quaternion expansions are used to construct the
s-o coupling matrices in the matrices of the SLIM algorithm.
These matrices are then available for an extension of the
optimization facilities in Bmad to minimize depolarizing
effects by spin matching.

INTRODUCTION
Relativistic electrons and positrons in storage rings emit

synchrotron radiation and that can lead to a build up of spin
polarization by the Sokolov-Ternov effect. At the same time
noise is injected into the particle trajectories by the stochastic
element of photon emission. The stochastic orbital variation
couples via the T-BMT equation with the spin motion caus-
ing depolarization. The attainable equilibrium polarization
results from the balance between the two effects. The rate
of depolarization increases with beam energy much faster
than the rate of polarization. Moreover the depolarization
is enhanced near depolarizing resonances occurring when
the closed-orbit spin tune a0 is close to an integer linear
combination of the orbital tunes. See [1, 2] for details of
these matters.

However it is highly desirable to have polarized beams at
future high-energy rings like the proposed FCC-ee [3] and
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the CEPC [4, 5] as well as at the EIC [6] to extend the poten-
tial of the particle physics program as well as to provide a
means of precise beam-energy calibration via resonant depo-
larization using radio-frequency transverse magnetic fields.
Thus estimates of the attainable polarization are essential
for guiding the design of a ring.

The attainable polarization can be estimated using per-
turbation theories to evaluate the terms in the Derbenev-
Kondratenko (DK) formula [1, 2]. But the resulting formulas,
describing the resonances, can be very complicated and the
perturbation series might not converge. Moreover, at very
high energy the so-called "uncorrelated resonance crossing"
[7], whose effect is difficult to estimate with certainty, might
dominate over the predictions of the DK formula. Thus it
is better to rely on Monte-Carlo tracking simulations of the
effects on spins of the magnetic and electric fields and of the
stochastic photon emissions. An ideal modern framework
for this is the Bmad/Tao software toolkit [8]. Bmad/Tao can
handle nonlinear orbital motion, beam-beam forces and nu-
merous phenomena in storage rings that go beyond standard
spin-orbit tracking. Nevertheless, it always makes sense to
begin with first-order perturbative analytical (SLIM) calcu-
lations to get a first impression of the situation. The SLIM
formalism also provides structures for so-called spin match-
ing, namely the method for minimizing depolarization at
first order. This paper describes recent developments of
Bmad/Tao spin simulation capabilities along with bench-
marking with SLICKTRACK [1, 2].

RECENT DEVELOPMENTS IN BMAD/TAO
SIMULATION TOOLKIT

Bmad/Tao has been extended to handle:

• Via the SLIM formalism [1, 2, 9] of linearized orbital
and spin transport in terms of the 8 × 8 matrices which
then can be analyzed using standard linear algebra tech-
niques to deliver a first-order estimate of the rate of
depolarization.

• Spin-orbit Monte-Carlo tracking with full 3-D spin
motion implemented in a multi-turn/long-term tracking
program which can employ many spin-orbit tracking
backends: PTC [10], Bmad, One-turn Map, Multi-map
with sectioning.

• Spin resonance strength calculations with energy scans
implemented in a Python/PyTao script.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS056

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques

WEPOMS056

2383

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 1: Depolarisation time (minutes) as a function of
energy (GeV) computed using various spin-tracking and
linear approximation codes for a test lattice. SLICK and
SLIM curves display the results from linear codes. Others
are results from tracking.

• Bmad-based program to convert Bmad lattices to
SLICKTRACK format: Bmad lattice specifications are
compatible with those of SLICKTRACK so that it can
be used for testing and benchmarking future Bmad de-
velopments.

• Spin matching for minimizing depolarizing effects at
first order in the SLIM framework while simultane-
ously maintaining functional optics and while being
self-consistent with the Bmad/Tao spin-orbit tracking
facilities.

The sectioning mentioned in the second item involves
beginning a Monte-Carlo simulation by setting up and stor-
ing spin-orbit Taylor maps between the centers of dipole
magnets and then subsequently using the pre-stored maps
to transport spins and particles from dipole to dipole while
radiating energy at each dipole. This results in a large in-
crease in tracking speed compared to the speed available in
element-by-element tracking.
In addition to SLIM, Monte-Carlo spin-tracking algorithms
in Bmad were tested against SLICKTRACK results, see
Fig. 1. For all test lattices after many improvements in both
codes the comparison results are very good.

LINEARIZED SPIN-ORBIT MOTION
(SLIM)

The SLIM formalism [1, 2, 9, 11, 12] has been imple-
mented in Bmad/Tao since August 2018 [8]. We now briefly
formulate the algorithm here and point out specifics associ-
ated with the Bmad implementation and refer the reader to
the Bmad Manual [8] for more details.

The SLIM formalism expresses spin components using
two right-hand coordinate systems(

𝑙 (𝑠), �̂�0 (𝑠), �̂�(𝑠)
)

and
(
𝑙0 (𝑠), �̂�0 (𝑠), �̂�0 (𝑠)

)
. (1)

The axis �̂�0 (𝑠) is the unit-length, one-turn-periodic solution
of the Thomas-BMT equation on the closed orbit. The axes

𝑙0 (𝑠) and �̂�0 (𝑠) are unit-length solutions of the Thomas-
BMT equation on the closed orbit and, generally, are not
one-turn periodic. The axes 𝑙 (𝑠) and �̂�(𝑠) are chosen to be
one-turn periodic but can have an arbitrary 𝑠 dependence
which can be chosen for convenience. The axes 𝑙0 (𝑠) and
�̂�0 (𝑠) are used for spin-matching and 𝑙 (𝑠) and �̂�(𝑠) are used
for calculating polarization and depolarization. With respect
to these axes, a unit-length spin S can be written as

S =

√︃
1 − 𝛼2

0 − 𝛽2
0 �̂�0 + 𝛼0 𝑙0 + 𝛽0 �̂�0, or

S =

√︃
1 − 𝛼2 − 𝛽2 �̂�0 + 𝛼 𝑙 + 𝛽 �̂�. (2)

At first order (𝛼2
0 + 𝛽2

0 << 1 or 𝛼2 + 𝛽2 << 1) the spin
component along �̂�0 is a constant. With this, the eight-
dimensional spin-orbit phase space used in the SLIM for-
malism is

(𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦 , 𝑧, 𝑝𝑧 , 𝛼0, 𝛽0) or (𝑥, 𝑝𝑥 , . . . , 𝑝𝑧 , 𝛼, 𝛽). (3)

where the orbital part 𝑢 = (𝑥, 𝑝𝑥 , . . . , 𝑝𝑧) is taken with
respect to the closed orbit.

The first-order map between any two points 𝑠1 and 𝑠2 is
an 8 × 8 matrix M̃ which is written in the form

M̃(𝑠1, 𝑠2) =
(

M6×6 06×2
G2×6 D2×2

)
, (4)

where M(𝑠1, 𝑠2) is the 6 × 6 orbital phase space transport
matrix, and G(𝑠1, 𝑠2) contains the coupling of the spin coor-
dinates (𝛼0, 𝛽0) or (𝛼, 𝛽) to the orbital motion. The upper
right block 06×2 in the M̃ matrix is zero since Stern-Gerlach
effects are ignored. When G is calculated with respect to
the (𝑙0, �̂�0) axes, large spin precessions on the closed orbit
due to dipole and solenoid fields are eliminated. That leaves
small precessions due to synchro-betatron motion. The G
matrix then represents the dominating linear dependence
of the small precessions on the six synchro-betatron coor-
dinates and it then provides a good framework for analysis
[1, 2, 13]. In Eq. (4), D is a 2 × 2 rotation matrix for the
spin transport of a particle on the closed orbit. With 𝑙0 (𝑠)
and �̂�0 (𝑠) D is the unit matrix since they are solutions to
the T-BMT equation. In contrast to the way how G and D
are calculated in SLIM, Bmad calculates G and D from the
first-order terms of Taylor expansions of quaternions, for
spin-transport maps, provided by PTC.

Spin matching involves adjusting the optics and layout
of a ring so as to minimise certain components of the G
matrices, based on 𝑙0 (𝑠) and �̂�0 (𝑠), for certain sections of a
ring, thereby minimizing the influence of orbital motion on
spin motion and minimizing the depolarization.

As shown in [1, 2, 9] to calculate of the rate of depo-
larization at this first order one needs the M̃ for one turn
around the ring with a G based on 𝛼 and 𝛽. Then the rate of
depolarization can be obtained in terms of components of
the eigenvectors of M̃.
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CALCULATION OF RESONANCE
STRENGTHS

The G matrix, based on 𝑙0 (𝑠) and �̂�0 (𝑠) can also be
exploited to calculate the strengths of the resonances, b𝑟 ,
needed to estimate the change of polarization, using the
Froissart-Stora formula, when a0 changes as polarized elec-
tron or proton beams are accelerated through resonance con-
ditions [14]. Thus

b𝑟 =
1

2𝜋
| (𝐺 (1, :) + 𝑖𝐺 (2, :))𝑣𝑘 |, 𝑟 = 1, 2, 3, 𝑘 = 2𝑟 − 1,

where 𝐺 (1, :) and 𝐺 (2, :) are first and second rows of the
𝐺-matrix. In contrast to traditional treatments [15], this
formalism handles fully coupled systems, giving resonance
strengths for all three orbital modes at the correct orbital
tunes for coupling. These resonance strengths also have
a function in so-called harmonic synchro-beta spin match-
ing for electrons (positrons) [1, 2]: reduction of resonance
strengths can help to minimise depolarization.

These matters are illustrated in Fig. 2 which shows reso-
nance strengths as a function of beam energy for the ATS
and versions 5.2 and 5.3 of the ESR storage rings. The proce-
dure for computing the resonance strengths for these lattices
is as follows.
i) Begin with 14 GeV and 18 GeV lattices and
ii) Do an energy scan while varying the solenoid strengths so
that the polarization is longitudinal at the IP, to find energies
where a0 is in first-order resonance with an orbital tune.
iii) At each energy where there is a first-order resonance,
vary the non-arc quadrupoles (except for quads near the IP
in the region so that:
iv) The transfer matrices between solenoid pairs are decou-
pled and transfer matrices between the IP and the edges of
the arcs regions are the same as the baseline lattice.

The lattice parameters for the test rings are shown Tab. 1.

Table 1: Lattice Parameters for Resonance Strength Scan

ATS ESR v5.2 ESR v5.3
𝑄𝑥 60.080765 49.119985 48.119983
𝑄𝑦 56.062995 43.099988 43.099988
𝑄𝑠 0.0442051 0.0442542 0.0444020
𝑎𝛾0 40.6265 40.4937 40.4937

Energy, GeV 17.902 17.8435 17.8435
a0 0.49962949 0.50017118 0.50017118

𝑃ST, % 90.66 82.78 81.16
𝑃DKM, % 73.08 65.02 61.79
𝑃𝑥 , % 85.94 74.63 70.81
𝑃𝑦 , % 90.67 82.78 81.16
𝑃𝑠 , % 73.862 64.02 58.96

𝜏BKS, minutes 32.1 36.1 35.5
𝜏dep, minutes 142 216 172

Figure 2: Resonance strength calculation.

CONCLUSION
The Bmad/Tao toolkit has been extended to become a

powerful tool for Monte-Carlo simulations of depolarization
in high-energy electron (positron) storage rings as well as
to provide resonance strengths for fully coupled systems
and spin matching and SLIM-like estimates self-consistently
within the same package.
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