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Abstract
Traditionally, in the accelerator physics field, accurate

harmonic analysis has been performed by iteratively inter-
polating the result of Fast Fourier Transform (FFT) in the
frequency domain. Such an approach becomes computa-
tionally demanding when relatively small effects are being
studied, which is especially evident in the typical example
of harmonic analysis of turn-by-turn beam position monitor
data, i.e. many correlated but noisy signals. A new har-
monic analysis algorithm, called Harpy, is about an order
of magnitude faster than other methods, while often being
also more accurate. Harpy combines standard techniques
such as zero-padded FFT and noise-cleaning based on sin-
gular value decomposition. This combination also allows
estimating errors of phases and amplitudes of beam-related
harmonics calculated from cleaned data.

INTRODUCTION
In accelerator physics, accurate harmonic analysis is one

of the critical numerical methods. Nowadays, the tighter
tolerances shift the attention from the determination of fre-
quencies, such as betatron or synchrotron frequency, to the
measurement of phases of even smaller spectral lines. A
good example and this paper’s motivation is the beam optics
measurement in storage rings. One of the ways to measure
the beam optics in a storage ring is to analyse beam position
monitor (BPM) orbit readings of coherently-excited beams
recorded turn-by-turn (TBT) [1]. The calculations of the
actual optical functions (for example, phase advances, 𝛽-
functions and resonance driving terms) are the last steps
in the analyses, which require frequencies, amplitudes and
phases of the different spectral lines, commonly referred to
as frequency spectra.

Traditionally, in the analysis process, TBT BPM data is
first cleaned of noise using methods [2–4] based on Sin-
gular Value Decomposition (SVD). Then, frequency spec-
tra of cleaned TBT data are computed for every BPM in-
dependently employing methods [5,6] based on frequency
interpolation in the output of the Fast Fourier Transform
(FFT). The computation is an iterative process, and in each
iteration, the strongest signal in the FFT output is interpo-
lated (i.e. found) and subtracted after Gram-Schmidt ortho-
normalisation. With typically hundreds of iterations the
frequency analysis is computationally expensive. The phase
accuracy of frequency-interpolation based methods [5,6]
was found to be worse than FFT [7].

We presented an intermediate algorithm [8], which calcu-
lated the frequency spectra of the data decomposed by SVD
and recomposed the BPM spectra in the frequency domain.
As a result, it was more than an order of magnitude faster,

which is essential for efficient beam operation, for example,
in automatic coupling correction [9]. However, the accuracy
issue remained unresolved for weak spectral lines.

The work presented here leverages modern open-source
scientific libraries such as NumPy [10], SciPy [11] and pan-
das [12] used across various domains. Together with the
current computational power, they allow for efficient high-
level analyses, such as refined frequency analysis performing
FFT only once, i.e. not in a number of iterations.

This paper describes Harpy, which combines SVD with
zero-padded real FFT (RFFT) to clean the noise and compute
frequency spectra efficiently, as shown in Figure 1. Such
an approach addresses the performance issues (both speed
and accuracy), makes the error propagation transparent, and
allows for simpler use of windowing functions to trade fre-
quency, phase, and amplitude accuracy.

Figure 1: Schematic illustration of main Harpy principle.
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NOISE CLEANING USING SVD
All the BPMs observe the same beam oscillations, which

grants large correlations between the different BPM signals,
at the same time, BPM signals are not fully correlated due
to, for example, BPM electronic noise. In order to improve
analysis precision and accuracy, the BPM noise is reduced
using SVD.

For each of the two planes, the TBT BPM matrix A is
decomposed as A = USVT, where columns of the U and
V matrices are orthonormal vectors. The columns of V
are being called “modes” in the following. S is a diagonal
(positively definite) matrix with non-negative elements, the
singular values, sorted in decreasing order. The following
holds for elements 𝑎 𝑗𝑛 of A with 𝑗 and 𝑛 indexing BPMs
(up to 𝑁𝐵𝑃𝑀𝑠) and turns (up to 𝑁𝑡𝑢𝑟𝑛𝑠), respectively:

𝑎 𝑗𝑛 =

𝑚𝑖𝑛(𝑁𝐵𝑃𝑀𝑠 ,𝑁𝑡𝑢𝑟𝑛𝑠 )∑︁
𝑘,𝑙=1

𝑢 𝑗𝑘𝑠𝑘𝑙𝑣𝑛𝑙 , (1)

The least correlated signals represented by large |𝑢 𝑗𝑘 | are
removed, the columns of U matrix renormalised and singular
values rescaled accordingly, typically in 3 iterations. The
BPM noise is reduced by recomposing cleaned TBT data C
using only the first 𝑁𝑚𝑜𝑑𝑒𝑠 modes with the largest singular
values (after the rescaling):

𝑐 𝑗𝑛 =

𝑁𝑚𝑜𝑑𝑒𝑠∑︁
𝑘,𝑙=1

𝑢 𝑗𝑘𝑠𝑘𝑙𝑣𝑛𝑙 . (2)

The amplitude of the removed signals depends on the BPM
hardware, beam parameters, and the actual choice of 𝑁𝑚𝑜𝑑𝑒𝑠 .
Rms of the difference between raw and cleaned data esti-
mates the BPM resolution. The estimate of noise remaining
in the cleaned data will be discussed later.

ZERO-PADDED RFFT
Once the data are cleaned their frequency spectra are

computed using FFT. For a signal 𝑥 of length 𝑁𝑡𝑢𝑟𝑛𝑠 , we get
a complex coefficient 𝑋𝑚:

𝑋𝑚 =

𝑁𝑡𝑢𝑟𝑛𝑠−1∑︁
𝑛=0

𝑥𝑛𝑒
−𝑖2𝜋𝑚𝑛/𝑁𝑡𝑢𝑟𝑛𝑠 , (3)

for 𝑚 ∈ {0, 1, . . . , 𝑁 − 1}, where 𝑚/𝑁𝑡𝑢𝑟𝑛𝑠 denotes cor-
responding frequency. The equation has the form of inner
product of 𝑥𝑛 and 𝑒−𝑖2𝜋𝑚𝑛/𝑁𝑡𝑢𝑟𝑛𝑠 . We utilise two well known
facts that follow from Eq. (3):

• for real signal 𝑥, 𝑋𝑁−𝑚 = 𝑋∗
𝑚 (complex conjugate), i.e.

only half of the spectra needs to be computed by FFT.

• signal 𝑥 can be formally extended (padded) with zeros
covering the same frequency range by larger number
𝑁𝑝𝑎𝑑𝑑𝑒𝑑 of distinct frequencies.

Signal 𝑥 may be multiplied by a normalised windowing
function 𝑤 to manipulate spectral leakage. Harpy utilises
the output of RFFT of zero-padded (powers of 2) signal 𝑥:

𝑋𝑚 =

𝑁𝑡𝑢𝑟𝑛𝑠−1∑︁
𝑛=0

𝑥𝑛𝑤𝑛𝑒
−𝑖2𝜋𝑚𝑛/𝑁𝑝𝑎𝑑𝑑𝑒𝑑 , (4)

for integer 𝑚 < 𝑁𝑝𝑎𝑑𝑑𝑒𝑑/2 covering the frequency range
from 0 to 0.5.

HARMONIC ANALYSIS OF
DECOMPOSED DATA

Multiplication by elements of the matrix U in Eq. (2) is a
linear combination of S · VT rows and zero-padded RFFT
is a linear operation. The two operations can be swapped
to reduce the amount of computation, yet leading to the
identical frequency spectra. Combining the Eqs. (2) and (4),
we obtain complex coefficients 𝐶 𝑗𝑚 of zero-padded RFFT
of matrix C corresponding to BPM No. 𝑗 and frequency
𝑚/𝑁𝑝𝑎𝑑𝑑𝑒𝑑:

𝐶 𝑗𝑚 =

𝑁𝑚𝑜𝑑𝑒𝑠∑︁
𝑘=1

𝑢 𝑗𝑘

𝑁𝑡𝑢𝑟𝑛𝑠∑︁
𝑛=1

𝑠𝑘𝑘𝑣𝑛𝑘𝑤𝑛𝑒
−𝑖2𝜋𝑚(𝑛−1)/𝑁𝑝𝑎𝑑𝑑𝑒𝑑 .

(5)
For precision measurements (high 𝑁𝑝𝑎𝑑𝑑𝑒𝑑), the amount

of computation in left summation of Eq. (5) is reduced by
keeping only the frequency ranges of interest (around mul-
tiples of betatron and synchrotron tunes). The tunes with
tolerances are either provided by a user or more often cal-
culated automatically as the frequency of the strongest line
in the spectra of an average row of cleaned S · VT. Betatron
tunes are found in a higher frequency range in a given plane,
whilst synchrotron tune is found in a low-frequency range in
the horizontal plane. For example, the calculation of RDTs
up to octupolar terms requires about 6% of the frequency
spectra, i.e. the left summation of Eq. (5) is performed only
for 6% of 𝑚 values. At last, the data size is reduced again by
keeping only the complex coefficients (and corresponding
frequencies) with largest amplitude among a number (again
powers of 2) of coefficients in same-sized bins.

Harpy identifies beam-related harmonics as the strongest
lines in given frequency intervals around multiples of the
(driven [13] or natural) tunes in the BPM frequency spectra.
The same value of betatron tune is expected to be measured
by all BPMs. Statistics-based cleaning [14] is utilised to
remove BPMs, which measured betatron tunes too different
from the average value.

The calculation time naturally scales with the requested
precision (𝑁𝑝𝑎𝑑𝑑𝑒𝑑), the number of singular modes 𝑁𝑚𝑜𝑑𝑒𝑠 ,
and the portion of the frequency spectrum covered. There
are also other effects playing a role: vectorisation, which
increases the granularity of some of the parameters, and the
speed of memory allocation. The 6% coverage of frequency
spectra of LHC’s double-plane TBT BPM data (𝑁𝐵𝑃𝑀𝑠 ≈
500, 𝑁𝑡𝑢𝑟𝑛𝑠 = 6600, 𝑁𝑚𝑜𝑑𝑒𝑠 = 12, 𝑁𝑝𝑎𝑑𝑑𝑒𝑑 = 221) is
calculated in about 2 seconds, compared to about 30 seconds
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Figure 2: Accuracy of simulated phase advance measured between pairs of BPMs as a function of a number of turns. It
uses supposedly the same spectral lines: the main spectral line (left plot) and two orders of magnitude weaker spectral
line in its vicinity (right plot). Two sets correspond to the uncleaned noise of 0.5-1% (full lines) and 5-10% (dashed lines)
compared to the amplitudes of main line. Accuracy expected from Eq. (6), which does not take the spectral leakage into
account, is shown in black and measured Harpy’s accuracy using Hann window is shown in blue.

for [6], both using 32 CPUs. A single parameter change at
a time extends the calculation time: 𝑁𝑚𝑜𝑑𝑒𝑠 = 120 to 4
seconds, covering 27% of spectra as well as 𝑁𝑝𝑎𝑑𝑑𝑒𝑑 = 223

to 7 seconds.

ACCURACY AND ERROR ESTIMATES
The expected accuracy levels (without effect of spectral

leakage) for phase and relative amplitude 𝜎𝑝ℎ𝑎𝑠𝑒,𝑟𝑒𝑙_𝑎𝑚𝑝 of
any given line in frequency spectrum calculated from Eq.
(5) and with amplitude A is given by e.g. [15]:

𝜎𝑝ℎ𝑎𝑠𝑒,𝑟𝑒𝑙_𝑎𝑚𝑝 ≈

√︄
2

𝑁𝑡𝑢𝑟𝑛𝑠

𝜎𝑜𝑟𝑏𝑖𝑡

A , (6)

where 𝜎𝑜𝑟𝑏𝑖𝑡 is the accuracy of the position measurements,
i.e. after noise reduction by SVD Eq.(2).

When subtracting the phases of the same spectral line
measured in two BPMs (e.g. phase advance calculation),
systematic error may arise from slightly different measured
frequency of spectral line, i.e. coefficients indexed by un-
equal 𝑚s are compared. The phase of a given spectral line
is the phase at "reference" turn No. 1. Following the time-
wise translation symmetry of underlying physics processes,
the systematic error (Δ𝑚𝑁𝑡𝑢𝑟𝑛𝑠/2𝑁𝑝𝑎𝑑𝑑𝑒𝑑) is corrected by
shifting a "reference" turn to the middle of the analysed
sample.

Figure 2 shows the phase advance accuracy of a stronger
line and two orders of magnitude weaker secondary line in
its vicinity (random frequency difference from 0.03 to 0.05)
as a function of a number of turns. RMS of the difference to
the value defined (in a set of 100 BPMs, and ten frequency
differences) estimates the accuracy. The two sets of samples
(full resp. dashed) correspond to uncleaned Gaussian noise
with RMS of 0.01 and 0.1, compared to the amplitude of the
main spectral line ranging from 1 to 2. The phase accuracy
of Harpy was found to be better than standard method, for
example, in experimental data from and CERN’s PS [16].

The uncleaned noise, position error 𝜎𝑝ℎ𝑎𝑠𝑒,𝑟𝑒𝑙_𝑎𝑚𝑝, is
usually estimated empirically, i.e. as a certain fraction of
the noise in original data. However, the following algorithm

leads to a more robust error estimate after the noise reduction.
Similarly to the reduction of frequency error propagating
into phase error. The underlying effects have time-wise trans-
lation symmetry, i.e. the result is fundamentally not different
if we remove starting or ending columns of the TBT BPM
matrix. Thus we can construct, for example, three different
and mostly overlapping sub-matrices of A: A0, A1 and A2

shifted by a single turn. They are two turns shorter than A.
Aintersect matrix being matrix 𝐴 without the first two and last
two columns is a sub-matrix of each of them. Stacking them
up, we obtain a matrix with dimensions 3 · 𝑁𝐵𝑃𝑀𝑠 times
𝑁𝑡𝑢𝑟𝑛𝑠−2. On such a matrix, we perform noise reduction by
SVD. By comparison the elements of cleaned sub-matrices
corresponding to elements of the matrix Aintersect, we get a
more error estimate after noise reduction.

CONCLUSIONS AND OUTLOOK
Harpy, a simple method based on standard and well-

established software components [10–12] has been devel-
oped. Harpy reduces the noise, computes the frequency spec-
tra of decomposed data and filters the frequency regions of
interest before recomposing BPM frequency spectra. Then,
it searches the beam-related harmonics in the filtered spec-
tra and outputs frequencies, amplitudes and phases of the
harmonics, together with estimates of their errors. Option-
ally, Harpy removes mal-functioning BPMs using SVD and
statistical cleaning [14] of tune frequency.

Harpy is currently being utilised in the optics measure-
ments analyses across circular accelerators at CERN, PE-
TRA III at DESY and SuperKEK-B in KEK. However, it
may be helpful for frequency analysis of any set of many cor-
related noisy signals. In the beam optics measurements, it is
typically an order of magnitude faster than standard methods
while often providing more accurate results, especially for
noisy data.

The code [17] was initially integrated into [18], currently
its development continues as a separate package, and future
releases aiming toward more general use cases can be found
in [19].
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