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Abstract
Single-crystal monochromators are used in free electron

lasers for hard x-ray self-seeding, selecting a very narrow
spectral range of the original SASE signal for further ampli-
fication. When rotating the crystal around the roll and pitch
axes, one can exploit several symmetric and asymmetric re-
flections as established by Bragg’s law. This work describes
the implementation of a machine learning classifier to iden-
tify the crystal indices corresponding to a given reflection,
and eventually calculate the difference between the photon
energy as measured by a single-shot spectrometer and the
actual one. The image processing techniques to extract the
properties of the crystal reflection are described, as well as
how this information is used to calibrate two spectrometer
parameters.

INTRODUCTION
Hard X-Ray Self-Seeding (HXRSS) is based on the

principle of using crystal monochromators to narrow down
the spectral range of self-amplified spontaneous emission
(SASE) free electron lasers (FELs) whilst increasing the
peak spectral brightness [1, 2]. In its simplest configuration,
a self-seeded XFEL consists of an input undulator and an
output undulator separated by a single crystal monochroma-
tor. In order to ease heat loading effects at high repetition
rate and low photon energies, at the European XFEL
(EuXFEL) we installed two cascaded HXRSS systems at
the SASE2 undulator line, as shown in Figure 1.

HXRSS can only be achieved when the incident beam
hits the crystal at the Bragg angle corresponding to the
seed frequency for a specific reflection. Thus, the seeded
XFEL output is reliant on the diffraction process in the
crystal, which highly depends on the crystal orientation
with respect to the incident beam direction. The crystal
orientation can be controlled in pitch and roll by means of
dedicated stages, where the pitch angle 𝜃𝑝 can move in the
range 30° ≤ 𝜃𝑝 ≤ 120°. The yaw plane controlled by 𝜃𝑦 is
kept constant and unchanged throughout operation. Figure 1
shows the crystal rotational convention considered in this
work. The pitch rotation axis is orthogonal to the beam
incident direction and parallel to the floor, while the roll
rotation axis has an axis lying parallel to the beam incident
direction when 𝜃𝑝 = 0°.

The HIgh REsolution hard X-ray single-shot (HIREX)
spectrometer installed at the SASE2 undulator beamline of
the European XFEL is employed to measure the spectrum
∗ christian.grech@desy.de

Figure 1: EuXFEL’s SASE2 undulator two-crystal hard x-
ray self-seeding scheme.

of individual photon pulses. The spectrometer is based on
diamond gratings, bent crystals, and a MHz-repetition-rate
strip Gotthard detector [3]. An X-ray Gas Monitor (XGM)
detector provides a complementary measure of the total
x-ray pulse energy, without spectral information. The
pySpectrometer photon diagnostic software developed for
the European XFEL [4] is used to monitor the measured
spectrum, as well as control the calibration of the HIREX
spectrometer. Two spectrometer calibration parameters can
be controlled through this diagnostic tool: the reference
energy and the pixel calibration. The reference energy
parameter 𝐸0 provides an absolute energy value, as a
reference for the measured spectrum. It does not necessarily
correspond to the seeding energy. The second parameter,
the pixel calibration, is defined as the change in energy
corresponding to a displacement of one pixel, with respect
to the pitch angle.

Identifying the actual photon energy to obtain the desired
crystal reflection can be arduous. In fact, there often are
many neighbouring (in terms of pitch angle and photon en-
ergy) reflections, and it can be difficult to identify the actual
one based on visual inspection. Machine Learning (ML)
methods applied to particle accelerator controls are becom-
ing more common, with the focus being on the efficient
use of large amounts of sensor data. In this paper, we pro-
pose and demonstrate a machine learning technique, which
can be applied at any XFEL facility utilising a monochro-
mator crystal setup to identify crystal reflections, and as a
result to identify the operational absolute photon energy. In
this study, data obtained at the EuXFEL over two years of
HXRSS commissioning and operation is considered, with
photon energies ranging from 6 keV to 18 keV. A measure-
ment model is developed based on Bragg’s law, and is used
to train a classifier that can identify the crystal reflection.
Crystal pitch angle and photon energy scans in the form of an
image are obtained from the spectrometer, fed to the model
and all reflections present in the image are identified. In the
end, this information is used to update the two spectrometer
calibration parameters. Figure 2 summarizes the complete
process from obtaining the image to determining the calibra-
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Figure 2: Schematic technique of the absolute energy cali-
bration based on the machine learning to predict the crystal
reflection identifier.

tion values. This approach can be potentially used to speed
up crystal-based setups at XFEL machines and contribute
to the calibration of energy measurement instruments.

MEASUREMENT MODEL
Whilst Bragg law defines the relationship between the

crystal rotational position and the photon energy (𝐸𝑝ℎ), it
does not consider systematic errors due to the crystal mis-
alignment in the beamline. This work considers five correc-
tive parameters that can be applied to match the theoretical
model to the actual (or expected) crystal behaviour. Eq.1
shows the proposed measurement model for the absolute
photon energy 𝐸𝑝ℎ, where 𝑓𝐵𝑟𝑎𝑔𝑔 represents Bragg law. The
pitch angle error (𝛿𝜃𝑝) is a constant associated with a fixed
deviation from the actual pitch angle, and similarly the yaw
angle error (𝛿𝜃𝑦) in the case of the yaw angle. The roll angle
error is linearly associated with the pitch angle, represented
by two constants (𝑘𝑟1, 𝑘𝑟2) as shown in Eq. 2.

𝐸𝑝ℎ = 𝑓𝐵𝑟𝑎𝑔𝑔(𝜃𝑝 + 𝛿𝜃𝑝, 𝜃𝑟 + 𝛿𝜃𝑟, 𝜃𝑦 + 𝛿𝜃𝑦) + 𝛿𝐸 (1)

𝛿𝜃𝑟 = 𝑘𝑟1 + 𝑘𝑟2𝜃𝑝 (2)

Finally, 𝛿𝐸 represents the offset between the set spectrom-
eter reference energy and the actual photon energy. This
value is not fixed but can vary from one measurement session
to another, depending on the spectrometer initial setup.

FEATURE EXTRACTION
Using pySpectrometer, when a monochromator crystal

is rotated in one of the axes, the photon energy measured
from the single-shot spectrometer can be correlated with
the angle of rotation and exported for further processing.
The information in the form of an image highlights any
reflection present, as shown for example in Figure 3a).

In order to segment the information in the foreground
from the background, thresholding is applied using the
method proposed by Yen [5]. This creates a binary image as
shown in Figure 3b). In addition, morphological closing is
performed. Morphological closing is useful for filling small
holes from an image while preserving the shape and size of
the objects in the image. The closing operation dilates an
image and then erodes the dilated image, using the same
structuring element for both operations.

Figure 3: Example of a) a captured image, b) a processed
version (binarization, dilation, erosion) and c) the detected
lines (Hough Transform).

For the identification of lines within the binary images,
the classical Hough transform method is implemented.
For each pixel in the foreground, a number of lines are
plotted going through it, all at varying angles (𝜃). The
Hough transform accumulates contributions from all pixels
in the detected edge. The distance between an origin
point and each pixel is calculated, and when multiple
points have similar (𝑟, 𝜃) values, these are considered
to pertain to the same line. In this way, a number of
lines can be detected from the image as shown in Fig-
ure 3c). As a result, several line properties, namely the line
slope, intercept and centroid co-ordinates can be determined.

In order to be able to match the detected lines with the mea-
surement model curves, tangent lines are generated for each
Bragg curve in the measured pitch angle range. This makes
the comparison between the measurement model curves and
the detected lines possible as both datasets consist of straight
lines.

CLASSIFIER TRAINING
A machine learning classifier is used to match detected

image lines with the tangent lines derived from the
measurement model. The classifier considers the features
of a given reflection line, and predicts the corresponding
Miller indices [ℎ, 𝑘, 𝑙]. Comparing three multi-class
classifiers, the k-nearest neighbors algorithm is found
to be the best fit for this scenario. The nearest neighbor
algorithm is a supervised machine learning method that
creates ’neighborhoods’ for objects with similar features.
The category of an unclassified point is found by comparing
the point features against those of the previously classified
𝑘 neighbors, which exist as a subset of a larger space of
previously classified points.

The classifier is trained with the properties of the tangent
line of the measurement model as input (slope, intercept,
centroid pitch angle, centroid energy) and the reflection
identifier as output. The algorithm calculates the proximity
between the measurement model features and the features
in the detected lines and picks the closest class. Once the
model is trained with the measurement model tangent infor-
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mation, the detected line properties are used as inputs and
an identifier is obtained for each line.

ABSOLUTE ENERGY CALIBRATION
Once an identifier is obtained for each detected reflection,

the vertical offset between the two lines can be determined,
which corresponds to the 𝛿𝐸 parameter in Eq. 1. As a re-
sult the spectrometer reference energy parameter 𝐸0 can be
relatively adjusted by this amount to calibrate the absolute
energy value. The pixel calibration can also be adjusted by
comparing the slope of the measured curve with the model
curve and applying the gain between the two values. A PyQt
GUI tool integrated with pySpectrometer provides users with
the ability to upload an image, perform feature extraction,
train the classifier, identify the reflections and recalculate
the spectrometer calibration parameters.

RESULTS
Thresholding Accuracy

The identification of straight lines from the captured im-
ages by thresholding the image is not a perfect method for
noting all visible lines, as some faint lines can be mistaken
for noise or background. In addition the accuracy is lower
in cases where the contrast between foreground and back-
ground is low. By default lines with a slope of zero or infinity
are ignored to avoid identifying measurement artifacts as
reflections. From over 200 images containing 446 lines (vis-
ible and faint lines), the Yen thresholding method is able to
extract 303 of these lines, corresponding to an accuracy of
68 %. What makes this method desirable for this scenario is
the very low number of false positives (line detection where
no reflection is present), which amounts to 3 lines in over
200 images.

Classifier Performance
Three classifiers are compared in this study: the nearest

neighbor, random forest and decision tree algorithms. The
performance criteria used for the comparison are the pre-
cision score, recall score, F1 score, and balanced accuracy
score. The precision score for multi-class classification can
be defined as the sum of true positives (TP) across all classes,
divided by the sum of true positives and false positives (FP)
across all classes. This is shown in Eq. 3.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶

∑
𝑐=1

𝑇𝑃𝑐/
𝐶

∑
𝑐=1

(𝑇𝑃𝑐 + 𝐹𝑃𝑐) (3)

The recall score, on the other hand sums the true positives
across all classes, and divides by the sum of true positives
and false negatives across all classes, as shown in Eq. 4.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶

∑
𝑐=1

𝑇𝑃𝑐/
𝐶

∑
𝑐=1

(𝑇𝑃𝑐 + 𝐹𝑁𝑐) (4)

The F1 score is the harmonic mean of both the precision
and recall score. The balanced accuracy score in multi-class

Figure 4: Normalized confusion matrix.

classification cases is introduced to deal with imbalanced 
datasets. This is true in this case as some reflections are 
represented more than others. The balanced accuracy score 
is the average of recall obtained on each class. Table 1 shows 
a comparison between these classifiers. Across all perfor-
mance metrics, the nearest neighbor algorithm was found to 
perform better than the other two algorithms.

Table 1: ML Classifier Comparison

Classifier Nearest
Neighbor

Random
Forest

Decision
Tree

Precision score 0.81 0.78 0.74
Recall score 0.83 0.75 0.73
F1 score 0.79 0.74 0.71
Bal. Accuracy 0.87 0.84 0.82

DISCUSSION AND PROSPECTS
In this work, we proposed a method for determining the 

absolute photon energy based on the identification of crystal 
reflections. Crystal reflections are first scanned at different 
pitch angles using the spectrometer, and the image obtained 
is binarized. With a 68 % extraction rate and a very low 
false positive rate, lines with a high intensity and good con-
trast from the background can be detected using the Hough 
Transform method. A ML classifier then compares a preset 
measurement model and the extracted lines and identifies the 
reflections based on different line properties. The confusion 
matrix in Fig. 4 shows which reflections were successfully 
identified, with most errors noted in cases where multiple 
parallel lines occur close to each other (for example classi-
fying [1, -1, -1] as [1, -1, 1]). Improvements in the future 
can be made in extracting more information from the raw 
images by trying different image processing techniques.
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