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Abstract

Machine learning and numerical optimisation algorithms
are getting more and more popular in the accelerator physics
community and, thanks to the computing power available,
their application in daily operation more likely. In the CERN
accelerator complex, and specifically on the beam transfer
systems, many promising numerical tools have been put
in place in the last years. Some of the state-of-the-art ma-
chine learning models have been explored and used to solve
problems that were never fully addressed in the past. In
this paper, the most recent results of application of machine
learning and numerical optimisation for injection, extraction
and transfer of beam from machine and to experimental ar-
eas are presented. An overview of the possible next steps
and shortcomings is finally discussed.

INTRODUCTION

The CERN accelerator complex went through a large
refactoring over the last few years with the LHC Injector
Upgrade project. All the accelerators are now capable of
providing better beam brightness, which has the final goal
of feeding High-Luminosity LHC (HL-LHC). Nevertheless,
all the experiments linked to the different injectors will also
benefit from the increase in performance.

Transfer lines, injection and extraction systems have been
a core part of the machine renovations, not only with new
hardware but also with new analysis methodologies and
more thorough studies. One of the possible sources of per-
formance boost is to move manual tuning and scanning of
system parameters to numerical methods. This is highly
relevant in cases where models are not available, where in-
strumentation is not adequate, as well as situations where
the machine time is expensive or not always available.

In this context, numerical optimisers and machine learn-
ing algorithms can play a significant role to boost our system
performance, improve stability and speed up commissioning
and tuning. Taking as an example the impressive progress
across the accelerators in the world, in this paper we sum-
marise the effort ongoing to test and explore ML techniques
on beam transfer systems and transfer lines in the CERN
accelerator complex.

∗ francesco.maria.velotti@cern.ch

NUMERICAL OPTIMISERS
APPLICATIONS

During recent years, many of the most common and pow-
erful numerical algorithms are made available to simple im-
plementation via the Python Package Index (PyPI). Thanks
to the support of python in the CERN control system, the
application of numerical methods directly to the accelerators
is now streamlined. Also, thanks to the additional software
layer put in place [1], we now have available a simplified
manner to deploy solutions via numerical optimisations to
problems which were addressed with lengthy manual scans.

Transfer Line Steering with BLMs
The Proton Synchrotron (PS) routinely delivers protons

to the neutron Time-of-Flight (n_TOF) experiment via the
FTN transfer line. From the same extraction channel, the PS
provides anti-protons to the Anti-proton Decelerator (AD)
after production via the proton-target interaction at the end
of the so-called FTA line. Both transfer lines are equipped
with almost no beam diagnostics for steering or beam size
measurements, but beam loss monitors (BLM) are avail-
able along their lengths. To address both steering issues,
derivative-free numerical optimisers are now applied to min-
imise the BLM readings. The main algorithm used for this
type of minimisation is BOBYQA [2] as it was the one show-
ing the best results in terms of convergence and machine
time needed. Studies to assess the performance of different
algorithms are ongoing.

Slow Extraction Losses Optimisation
The Super Proton Synchrotron (SPS) physics program is

dominated by the North Area (NA) users, which are provided
with a 400 GeV beam which is split among three primary
targets. The protons provided to the NA are slowly extracted
from the SPS using third-integer resonant slow extraction [3].
The main drawback of this technique are the beam induced
losses at the electrostatic septum (so-called ZS), due to the
direct interaction of primary protons with the anode wires.
The main contribution to the approximately 3% proton lost
at the ZS is the wires’ alignment, as the projected size on
the beam transverse coordinate increases in case of mis-
alignment. In order to reduce to the minimum the effective
thickness of the ZS, numerical optimisers have been shown
to successfully reduce the time needed for this procedure [4].
This is now routinely applied and the time has also been
significantly reduced using the BOBYQA algorithm: it went
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Figure 1: (Top) Images produced at the SPS BTV just upstream of the absorber block as obtained from simulations (first
row) and as generated by the trained. (Bottom) Comparison between labelled generative parameters for the data used for
training (first row) the VAE and the data used for testing (second row). All data shown are normalised to the totality of the
dataset.

from an almost 8 h manual procedure to less than 30 min. In
the same context, a large effort at CERN has produced the
conception and development of the so-called crystal shad-
owing concept to reduce the amount of protons impinging
on the ZS wires [5]. A silicon bent crystal is used as gap-
opener in the separatrix to deplete the part of the beam that
will hit the wires. Depending on the relative alignment of
the crystal with respect to the separatrix, different deflection
regimes arise, as documented in [5]. Channelling is the most
profitable one for the local shadowing concept, where a loss
reduction of about 45% was shown to be possible in the
SPS [5]. In volume reflection, a 20% loss reduction was ob-
served in the same machine configuration. Both alignment
regimes require many extractions to scan both crystal posi-
tion and angle. As detailed in [6], numerical optimisers were
exploited to speed up and simplify this procedure. Depend-
ing on the optimiser choice and initial conditions, the crystal
can be aligned both in channelling and in volume reflection.
Channelling is reached for most of the different initial con-
ditions, although convergence to Volume Reflection (VR)
has been observed in about 30% of the optimisations.

DEEP NEURAL NETWORK
APPLICATIONS

Data available in the accelerators span from time-series
to images, but they can also be more “exotic” such as sound

signals or element vibrations. Very well known descriptive
models are available for most of the phenomena to treat,
but in many cases, noise or other imperfections make the
accuracy of the prediction of low quality. Also, the compu-
tational cost may be very high when particle simulations are
needed and this usually not compatible with online analysis.

Different applications have been investigated: recurrent
Neural Networks (NN) to predict the beam induced heating
on a kicker system, deep NN to interpolate the non-linear
relation between current and field in the SPS dump kickers,
and several other deep NN to make simple surrogate models
to speed up parameter scans and optimisers’ experiments.

In this section, applications of deep NN for analysis of
screen images is presented.

Convolutional Neural Networks for BTV Image
Analysis

The SPS and LHC beam dump systems are equipped with
dedicated BTV [7] just before the absorber block of their
dump systems. The pattern formed by the bunches hitting
the surface of the screen contains information regarding
the kickers that have originated the dump and the beam
characteristics at that moment. In the LHC, a dedicated
system takes care of checking that the pattern of the beam on
the screen is indeed in agreement with the expectations, but
rather often the analysis fails due to imperfections and noise,
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but nothing to do with failures. In this context, we propose 
to use convolutional NN, specifically a slight modification of 
Variational Auto Encoders (VAE [8]) to retrieve anomalous 
dumps and to reconstruct the dump system configuration 
that generated that anomaly. As the simulations for both 
systems are of great accuracy, the proposed solution is to 
train a VAE with a modified loss function on simulated data 
and then deploy it on real BTV data.

In Fig.1-top, the results of training for the SPS beam dump 
system is shown compared with the original images. In Fig.1-
bottom, the generative parameters predicted are correlated 
with the original labels - in most cases, the agreement is 
excellent but for other parameters, the information extrac-
tion from the BTV image is not straightforward and this is 
reflected in the quality of the reconstruction.

Work is ongoing to deploy the trained VAE on real BTV 
data and first results are very encouraging. The reconstruc-
tion accuracy of the images can be used as metric to isolate 
anomalies and latent dimension prediction of the generative 
parameter to suggest which system has not performed as 
expected.

ANOMALY DETECTION
Beam transfer equipment such as kicker systems are crit-

ical components with potential significant impact on the 
global performance of the entire machine complex. Identi-
fying root causes of malfunctions is currently tedious, and 
may become infeasible in future systems due to increasing 
complexity. Looking to automate this with machine learn-
ing, a collaboration between CERN and KU Leuven was 
founded in 2017 in the framework of FCC Studies.

LHC Injection Kicker Installation
Several iterations of the study have yielded an anomaly 

detection pipeline which includes pre-processing, detection, 
post-processing and evaluation. Merging large quantities of 
data of different, asynchronous sources was an unexpected 
challenge. Gaussian Mixture Models and Isolation Forests 
are used as the main unsupervised detectors, but any detector 
can easily be plugged into the system. During evaluation, 
the detector predictions are compared to manual e-logbook 
entries which constitute a noisy ground truth. Lastly, ex-
pert knowledge has been incorporated by means of semi-
supervised clustering with COBRAS [9]. A grid search allows 
for hyper-parameter optimisation across the entire pipeline, 
which has yielded very promising results [10] as shown in 
Table 1.

The model, trained on historical data, flags unexpected 
behaviour in unseen data. Incorporation into an expert ap-
plication for daily usage is still pending.

Table 1: Incorporation of Expert Feedback From 2017 
Yields Improved Performance for 2018 with GMM

anomaly normal
detected 6 2
undetected 1 1437

LHC Beam Dump and Pipeline Generalisation
With the previous positive results in mind, the scalable

pipeline and code-base have been generalised so that they
can easily be applied to various beam transfer systems instal-
lations which have all different hardware configurations with
various specificalities. A single configuration file contains
all needed parameters.

This approach was tested on the most challenging instal-
lation, the LHC Beam Dumping System (LBDS) with 60
high-voltage pulse kicker generators with ample data. Due
to the size of the stored data, local pre-processing was not
possible anymore and a shift to Apache Spark™ clusters,
available through the CERN logging team, was made. This
has brought huge execution improvements but at the same
time complicates some non-partitionable operations such as
the required forward-fill after merging data from different
sampling domains. In addition the pipeline was extended
with explainability tools, needed for this use-case due to
the low number of anomalies only (i.e. hard to train) and
a high dimensionality (i.e. >1000). Among others, new
evaluation and ranking methods have been added such as
Recall@k and a HBOS score. The ground truth labelling
process was altered to be more representative of a real world
scenario. Lastly, an in-depth analysis of the detected anoma-
lies was performed using an improved web-application to
up the precision and recall for the LBDS.

Although the detector correctly detects anomalies, the
LBDS dataset still raises questions about the practical ap-
plication of this detector due to the high number of false
positives. Especially the fact that some individual features of
the LBDS dataset perform better than the full dataset should
be investigated, as indicated by Claessens [11].

CONCLUSION
Experimentation and testing of machine learning algo-

rithms is well advanced for the CERN accelerators beam
transfer systems. A series of successful examples were
briefly presented, spanning from numerical optimisation,
neural networks to anomaly detection. More applications
are being investigated, with special focus on system automa-
tion and online system monitoring. Work is ongoing to
deploy these methods in daily operation, to finally quantify
the performance gain in terms of manpower saved, beam
quality and setting up time.
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