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Abstract
Currently, accelerator optimizations are routinely per-

formed with the help of computer algorithms that allow
to fully automatize these tasks. However, their efficiency,
speed, and implementation time largely vary among them. In
LINAC4, a few optimization tasks were targeted using differ-
ent algorithms found by conducting a comparative analysis.
We present the problems for which computer algorithms
were used and the results of our comparative study.

INTRODUCTION
Numerical methods in accelerator performance optimiza-

tion have become a standard. A dedicated framework, called
GeOFF [1], has been developed at CERN to facilitate the
exploitation of optimizing algorithms. This generic opti-
mization framework acts as a high-level interface between
the CERN accelerator control system and different algo-
rithms, such that only the problem-specific code needs to be
developed. Another advantage is the possibility to choose
from a wide range of different conventional optimizers, and,
if needed, switch between them. In this article we describe
the tools and the achieved results for LINAC4 and for the
PSB extraction recombination line.

In 2020 LINAC4 replaced LINAC2 as the Proton Syn-
chrotron Booster (PSB) injector. It accelerates negative
hydrogen ions (H-) to the kinetic energy of 160 MeV [2]. It
is a normal conducting linear accelerator operating at a fre-
quency of 352 MHz. The linac was constructed and commis-
sioned in stages between 2013 and 2016 [3–6]. Reliability
runs took place in 2017 and 2018 [7, 8]. The commissioning
of the transfer line connecting it to the PSB took place in
2019 and of the charge exchange injection in 2020 [9].

The PSB is a synchrotron made of four superimposed
rings. At injection, each (H-) beam pulse is vertically dis-
tributed over the rings, and at ejection the proton bunches
are recombined vertically to follow the same trajectory when
sent to the PS or the ISOLDE experimental facility.

For the problems described in this document, it was not
practical to build a model through simulation, nor was it effi-
cient to employ full-scale approximation using, e.g., neural
networks. Some of the optimized quantities depend on fac-
tors that cannot easily be controlled and eventually change
with time, making it difficult to model these phenomena
reliably. Alternatively, the model could be learned from
accelerator data. However, this approach would require ex-
tensive beam time. Therefore, for the studies presented here,
we opted for efficient algorithms for handling cases with
limited data, like numerical optimizers and linear correction
via Singular Value Decomposition (SVD) [10, 11].

MACHINE SAFETY
Computer-driven optimizations must be carefully pro-

grammed because, in most cases, the beams have destructive
potential. An algorithm may decide to test settings corre-
sponding to significant beam losses, which could lead to
accelerator failure. Particle accelerators such as LINAC4
and the PSB are protected with multiple interlock systems,
but one cannot afford to rely solely on them when running
an optimization algorithm. Instead, the allowed parameter
ranges and step sizes must be set such that any increase
in beam losses stays within the acceptable ranges, and the
penalty for the beam loss is significantly higher than the
other terms in the objective function. It should be ensured
that losing the beam is not a way to find an optimum value.

Because of the aforementioned safety considerations and
the importance of the speed in finding an optimum, we con-
centrated on Derivative-Free Optimization (DFO) methods
that use a deterministic approach and discarded Bayesian
optimizers for initial tests. There exist different machine-
specific limits for the elements in the accelerators. Suppose
the parameter space breaches one of the element’s machine-
specific limits. If an out of range settings is attempted then,
in the best case, an exception is thrown halting the program
or the device stops with a fault. To ensure that this does
not happen, the program changes a given parameter scale
𝑠𝑚𝑎𝑥 to be within the allowed range 𝑠𝑚𝑎𝑥 = |𝑐 − 𝑠0|, where
𝑐 is the machine constraint and 𝑠0 initial condition for this
parameter. Every parameter has its own 𝑠𝑚𝑎𝑥. The same
applies for 𝑠𝑚𝑖𝑛. As a result, the relative parameter change
will be smaller than it initially would be, but inconsequential
for the algorithm’s performance.

DERIVATIVE-FREE ALGORITHMS
For the studies presented here, we focused on a branch

of DFOs called model-based methods. Here a surrogate
model of the objective function is constructed, defining the
next iteration by seeking to minimize this model inside a
trust region. One such method is COBYLA [12] and it em-
ploys linear approximations of the objective and constraint
functions. The approximations are formed by linear inter-
polation at 𝑛 + 1 points in the space of the parameters and
are regarded as vertices of a simplex. The model is equiv-
alent to a 1st-order Taylor expansion and at each step its
accuracy is improved asymptotically. By extending this to a
2nd-order Taylor expansion, the trust-region minimization
can now take curvature into account. An example of such an
algorithm is BOBYQA [13]. However, the quadratic model
comes at the price of making the model construction and
the trust-region minimization more difficult.
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The CERN GeOFF framework has been implemented in
Python, using the SciPy implementation of COBYLA and
the Py-BOBYQA of BOBYQA. Py-BOBYQA is an open-
source package, which includes robustness to noise strategies
and many other parameters that can be adjusted for optimal
performance.

OPTIMIZATIONS
LINAC4 Chopping Efficiency

The chopper is composed of a pair of electrostatic kickers
installed in the Mid Energy Beam Transport (MEBT), be-
tween the Radio Frequency Quadrupole (RFQ) and the first
Drift Tube Linac (DTL1) accelerating cavity. It removes
unwanted bunches by deviating them towards a dedicated
in-vacuum dump. This includes the pulse head, i.e., the first
200 µs where the pulse intensity is not yet constant, the 2 µs
gaps in the pulse corresponding to the rise time of the kick-
ers at the PSB distribution and the bunches that would fall
outside the PSB longitudinal acceptance. The chopping effi-
ciency is important because any remaining particles would
be accelerated by the RF system and lost at higher energies.
For the head of the LINAC4 beam pulse, there is a dedi-
cated in-vacuum dump installed in the device distributing
the beam to the 4 PSB rings, however, it can only tolerate
maximum 70 W of beam power.

The efficiency optimization involves setting eight trajec-
tory correctors and ten quadrupoles to minimize the intensity
of the unwanted bunches and maximize the intensity of the
wanted ones. The intensity is measured with a Beam Current
Transformer (BCT) located just behind the chopper dump
and the sum signal of a Beam Position Monitor (BPM) down-
stream of DTL1. The BPM has a much higher bandwidth
compared to the BCT and, therefore, provides more accurate
time-resolved measurements. Three pulses are measured for
each tested setting, and the average values are used in the
penalty function evaluation.

To ensure that the algorithm does not generate any danger-
ous beam losses the penalty function has a special term. If
the beam loss is bigger than 1% then then the square of the
intensity difference is added with a weight of 106. Addition-
ally, the maximum step size is kept small and the algorithm
is allowed to change the settings in a limited range close to
the initial values.

We compared the performance of COBYLA and
BOBYQA, with and without the noise switch enabled. The
best result was obtained using BOBYQA with the noise flag
on. On the other hand, it needed 120 iterations versus 30
iterations of COBYLA. While both managed to increase the
beam intensity by the same amount, BOBYQA reduced the
remaining intensity of the pulse head after the chopper dump
by almost a factor of two.

PSB Extraction and Recombination
The bunches from the four PSB rings are extracted se-

quentially and after the recombination they need to have the
same trajectory. In the first step of this process three bending

magnets (BE) create a closed orbit bump in the horizontal
plane. The kickers (KE) send the beam towards the septum
(SE). SE has one common power supply for all four beams,
and the same applies for the three BE magnets. Each of the
rings has only two high energy orbit corrector magnets to
regulate position and angle at extraction independently for
each ring. However, these create orbit oscillations all around
the ring, which should be avoided.

This optimization problem is complex partly because of
the relatively large number of parameters (>20) and because
some are common to all beams. Naturally, the aim is to mini-
mize signals of the Beam Loss Monitors (BLM). The BPMs
position reading should also be as small as possible. There
are several vertical correctors installed in the recombination
system. On the other hand, due to lack of space, there is
only one horizontal corrector per beam.

The quality of the trajectory overlap at each BPM is quan-
tified as 𝑞 = ∑4

𝑟=1(𝑝𝑟 − 𝑝𝑟)2, where 𝑝𝑟 is position reading
for beam from ring number 𝑟 and 𝑝𝑟 is the mean value. The
penalty function is a sum of four main components, each
having separate weights: the sum of 𝑞’s for all BPMs in the
transfer line, the sum of BLM signals squared, the sum of
position readings squared in the rings and in the transfer
lines. The highest weight was put on the BLM signals and
then on the recombination quality.

For this case, both COBYLA and BOBYQA were com-
pared. The algorithms had to be rerun a few times to reach
a satisfactory solution. This was most probably related to
the initial step size being small. It was always set to a mini-
mum value that changed observed quantities by a measurable
amount to minimize the risk that the tested settings provoked
significant beam losses and induced interlocks. In the auto-
matic optimization, the trajectories were successfully over-
lapped without increasing the BLM signals. However, it
failed to reduce loss and improve overlap simultaneously,
even in cases when the weight for the BLM part was in-
creased. The poor shot-to-shot stability of these signals,
reaching 20% of the amplitude, could be one of the reasons.

In the final optimized configuration the beam losses were
reduced by ten-fold with respect to the operational setting
in 2021. Observing the trajectory evolution during the op-
timization allowed us to understand relations that the algo-
rithm eventually failed to capture. For example, by changing
the ejection position for two beams simultaneously, one
could avoid losses when adjusting the septum at the sec-
ond recombination stage. In these cases, we applied the
correction and restarted the optimization program.

Due to the high number of parameters, COBYLA opti-
mized by a factor four more quickly than BOBYQA. How-
ever, the final result was worse. It seems that the knowledge
of the nominal settings and certain correlations between the
parameters were important factors for the final result, most
likely related to the high non-linearity of the problem.
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Figure 1: Comparison of optimization speed between SVD,
COBYLA and BOBYQA.

Dispersion Free Steering

In LINAC4, the vertical position variation along the pulse
is much more pronounced than the horizontal one and can
exceed 1 mm. The origin of this effect is not yet clear. It
could be related to imperfections in the chopper amplitude
or to vertical alignment issues. In the LINAC4 accelerator
hall the floor has risen by about 4 mm over the years and
the alignment of the RFQ is extremely delicate to perform.
The downstream elements were aligned to create a smooth
transition and the resulting beam performance is now within
the accepted range.

In an attempt to minimize the position variation, Disper-
sion Free Steering (DFS) [14, 15] was implemented. This
consists of a simultaneous correction of the trajectories and
of the measured dispersion. We look for the trajectory cor-
rector setting such that a cavity phase change does not change
BPM readings. The beam energy was changed by varying
phases in selected cavities at the beginning of the linac. This
unfortunately did not change the energy uniformly all along
the linac, but rather created a beating pattern.

In a simulation we compared COBYLA, BOBYQA and
SVD [11], see Fig.1. For this particular problem, we con-
cluded that SVD is by far the quickest method among the
ones tried out. This is due to the practicability of describing
the problem linearly by performing linear mapping between
trajectories measured at BPMs to the change in corrector
strength in the form of a matrix. This linear equation can
further be solved in a least-square sense via SVD. An addi-
tional advantage is that we can archive the response matrix
and reuse it in the future.

The measured dispersion and trajectory was successfully
minimized in single iteration in both planes. Figure 2 shows
the achieved improvement in the horizontal plane. We could
then confirm that with the obtained steering the trajectory
sensitivity to phase changes in all cavities was reduced. How-
ever, the vertical position variation along the pulse was not
improved indicating that it has a different origin than dis-
persion. The measured emittance was also not significantly
improved.

Figure 2: Horizontal position variation upon buncher cavity
phase change (top) and trajectory (bottom) along LINAC4.
Orange circles illustrate initial values and blue triangles op-
timized ones. Green line represent the algorithm prediction
for the corrected values.

CONCLUSIONS

Automatic optimization tools have been implemented for
chopping and dispersion-free steering in LINAC4, as well
as for beam extraction and recombination in the PSB. In all
the cases they successfully improved the performance.

For the problems that are linear, or nearly linear, such as
trajectory steering and Dispersion Free Steering, SVD is the
fastest algorithm. Additionally, the SVD response matrix
can be saved and reused on the next occasion if the condi-
tions do not change in time. For other applications, such as
extraction and recombination, we found that Derivative-Free
Optimization methods are the most suitable ones and we
used COBYLA and BOBYQA algorithms.

The consistently better performance of BOBYQA in com-
parison to COBYLA is due to the higher number of interpo-
lation points required by BOBYQA (2𝑛 + 1) to approximate
the Hessian. Meanwhile, for COBYLA, it is sufficient with
𝑛 + 1 for the Jacobian. The number of interpolation points
for BOBYQA can be adjusted to a minimum of 𝑛+1 interpo-
lation points to achieve quicker convergence, at the expense
of a less satisfactory result.

COBYLA, being a re-framing of steepest descent, starts
optimizing already in the discovering phase. That is, while
constructing the full simplex, if one of the vertices yields
better results, this setting is put immediately. Due to the lack
of curvature information in this model, the result is not as
satisfactory as with BOBYQA.
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