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Abstract
High intensities in the Low Energy Ion Ring (LEIR) at

CERN are achieved by stacking several multi-turn injec-
tions from the pre-accelerator Linac3. Up to seven consec-
utive 200 µs long, 200 ms spaced pulses are injected from
Linac3 into LEIR. Two inclined septa, one magnetic and
one electrostatic, combined with a collapsing horizontal or-
bit bump allows a 6-D phase space painting via a linearly
ramped mean momentum along the Linac3 pulse and in-
jection at high dispersion. The already circulating beam is
cooled and dragged longitudinally via electron cooling (e-
cooling) into a stacking momentum to free space for the fol-
lowing injections. For optimal intensity accumulation, the
electron energy and trajectory need to match the ion energy
and orbit at the e-cooler section.

In this paper, a reinforcement learning (RL) agent is
trained to adjust various e-cooler and Linac3 parameters to
maximise the intensity at the end of the injection plateau.
Variational Auto-Encoders (VAE) are used to compress lon-
gitudinal Schottky spectra into a compact latent space rep-
resentation as state input for the RL agent. The RL agent
is pre-trained on a surrogate model of the LEIR e-cooling
dynamics, which in turn is learned from the data collected
for the training of the VAE. The performance of the VAE,
the surrogate model, and the RL agent is investigated in this
paper. An overview of planned tests in the upcoming LEIR
runs is given.

INTRODUCTION
LEIR [1, sec. 4] is an ion synchrotron equipped with an e-

cooler. It is situated in the CERN accelerator chain between
Linac3 and the Proton Synchrotron (PS).

In nominal operation mode, it receives ions from Linac3
at 4.2 MeV per nucleon in seven consecutive pulses per
cycle. The pulses have a spacing of 200 ms and are 200 µs
long. They are injected into LEIR via 6-D phase space paint-
ing with a collapsing horizontal bump and a momentum
sweep. The latter is achieved with the debunching and the
ramping radio-frequency (RF) cavity at the exit of Linac3.

While circulating, each pulse is cooled and longitudinally
dragged by the e-cooler and stacked in a narrow phase space
volume to make space for the next pulse. Once all pulses are
injected, the beam is dragged back to nominal momentum,
captured into bunches and accelerated to the nominal target
beam rigidity. (For lead ions, this target corresponds to an
energy of 72.2 MeV per nucleon.) It is then finally ejected
into the transfer line towards the PS.
∗ nico.madysa@cern.ch
† verena.kain@cern.ch

Ten parameters have been identified as crucial for this
process: the start and end phase of the ramping and the de-
bunching RF cavity; the electron gun voltage at the start
and end of e-cooling; as well as the orbit positions (𝑥, 𝑦)
and angles (𝑥′, 𝑦′) at the e-cooler, controlled by orthogonal
orbit bumps.

These parameters ⃗𝑝 require frequent adjustment to ensure
that LEIR maintains its beam intensity in the ring after RF
capture (𝐼R,cap) above the nominal target 𝐼nom

R,cap = 10 × 1010

charges. Since LEIR entered operation in 2005, these para-
meters have been optimised manually by the operations
team. This is time consuming and often based on trial and
error. Instead, we propose an automatic system based on
machine learning that maximises beam intensity in a fast
and deterministic manner.

Data acquisition at LEIR takes several seconds per ma-
chine interaction. This precludes approaches that require
many evaluations of the loss function, particularly gradient-
based optimisation and model-free RL. Instead, we present
an approach based on a surrogate model. Using a limited
amount of data, we use supervised learning to train a model
of LEIR’s injection process and its dynamics at flat bottom,
then optimise this surrogate numerically and via RL.

DATA TAKING
Two runs of data were taken at the end of 2021 under

nearly identical machine conditions. Run 1 occurred on
November 8 and took 4293 samples over 15.5 h, Run 2 on
November 13 and took 4414 samples over 18 h.

Each sample recorded the following features:
• the parameters before ( ⃗𝑝𝑛−1) and after the change ( ⃗𝑝𝑛);
• the change itself, Δ ⃗𝑝𝑛 ∶= ⃗𝑝𝑛 − ⃗𝑝𝑛−1;
• the longitudinal Schottky spectrum after the change;
• the beam intensity after Linac3 and in the LEIR ring.
For both runs, the machine was first set up to the same

parameters, which had been found by manual optimisation.
This was recorded as the first sample. Then, for the rest of
the run, parameter settings were sampled from a uniform
distribution. They were applied to the machine and a new
sample was recorded.

Samples were discarded if their settings violated safety
limits. If the Linac3 intensity dropped below a certain
threshold due to temporary faults, recording was tempor-
arily suspended until it returned to expected levels.

During Run 1, parameters were sampled from a compar-
atively narrow distribution around the optimum; for Run 2,
the distribution was widened and almost all samples had a
very low intensity. This ensured that the data set contained
a comparable amount of high- and low-intensity samples.
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SURROGATE MODEL
Interpreting Schottky Spectra

To train RL algorithms effectively, adequate state inform-
ation is necessary. To this effect, a 𝛽-variational auto-
encoder [2] compresses each collected Schottky spectrum
into a small latent vector 𝑧 with only the most important in-
formation. The goal of a 𝛽-VAE is to reproduce its input as
closely as possible. The loss term to minimise is

𝐿tot(𝑥) = 𝐿MSE(𝐷(𝐸(𝑥)) , 𝑥) + 𝛽𝐷KL(𝐸(𝑥)), (1)

where 𝑥 is the Schottky spectrum, 𝐿MSE is the mean squared
error, 𝐷 and 𝐸 are the decoding and encoding half of the
VAE, 𝐷KL is the Kullback–Leibler divergence to a standard
normal distribution 𝒩, and 𝛽 is its weight factor. By for-
cing the latent representation 𝑧 = 𝐸(𝑥) to follow the distri-
bution 𝒩, it is possible to generate artificial Schottky spec-
tra by evaluating 𝐷(𝑧 ∼ 𝒩).

A good VAE can be found in two steps: first, 𝛽 is set
to zero and the number of latent variables 𝑁𝑧 is varied to
find the smallest value that gives a nearly minimal 𝐿MSE.
Then, 𝑁𝑧 is held constant and 𝛽 is varied to minimise 𝐷KL
while keeping 𝐿MSE low and the latent variables uncorrel-
ated. Overfitting is prevented via early stopping. The data
is split 90–5–5, meaning that 5 % are set aside for online
validation and another 5 % for post-training evaluation.
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Figure 1: The collected data over beam intensity 𝐼R,cap and
coefficient of determination 𝑅2.

The final VAE uses 𝑁𝑧 = 12 and 𝛽 = 0.005. The coeffi-
cient of determination is 𝑅2 = 0.59 ± 0.14, and is slightly
higher for low- than for high-intensity samples, as Fig. 1
shows. An example of its output is shown in Fig. 2. The
latent variables have a mean 𝜇𝑧 = −0.02 ± 0.04, a standard
deviation 𝜎𝑧 = 0.92 ± 0.10 and are almost uncorrelated.

Intensity Model
The next step is to associate each latent vector 𝑧 with our

figure of merit, the beam intensity 𝐼R,cap. For this task, a
multi-layer perceptron (MLP) has been trained and evalu-
ated on another 90–5–5 split of the data.
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Figure 2: A Schottky spectrum from the training data set
(left) and its reconstruction by the 𝛽-VAE (right).

The resulting model has a prediction error (mean and
standard deviation) of ⟨𝐼pred

R,cap − 𝐼 true
R,cap⟩ = (−0.1±0.9)×1010

charges, which is an acceptable amount. The median ab-
solute error is 0.2 × 1010 charges, which indicates that the
mean is dominated by few samples with large errors.

Dynamics Model
The last piece is a model of the system dynamics. For

this purpose, an MLP has been trained on the mapping
( ⃗𝑧𝑛−1, Δ ⃗𝑝𝑛) ↦ ⃗𝑧𝑛. Parameter changes are used instead of
absolute values in order to maintain the process’ Markov
property despite subtle effects that cause the machine’s op-
timal working point ⃗𝑝∗ to change over time (drifting).

The recorded dataset under-samples the region of small
parameter changes, ‖Δ ⃗𝑝‖ ≈ 0, a common problem in high-
dimensional phase spaces. Because small Δ ⃗𝑝 should lead
to small changes in ⃗𝑧, the original dataset is concatenated
with a “zero-action” dataset (mapping ( ⃗𝑧𝑛, 0) ↦ ⃗𝑧𝑛) of the
same size. Again, a 90–5–5 split has been used for training.
The evaluation is performed separately on the unmodified
and the zero-action portion.

The trained model shows near-perfect performance on the
zero-action dataset: The correlation coefficient 𝑐𝑖 between
predicted and target values is close to one for all 𝑧𝑖. For the
real data, the 𝑐𝑖 average at 0.54 and are spread nearly uni-
formly in the range [0.25, 0.90]. A principal-component
analysis shows that generally, components with higher im-
portance also are predicted with higher accuracy.

PARAMETER OPTIMISATION
Using these models, an optimisation problem has been

constructed that is a surrogate of the real machine. It uses
the CERN Common Optimisation Interfaces (COI) [3] for
compatibility reasons.

For numerical optimisation, BOBYQA [4, 5] has been
chosen as a black-box optimiser that operates on bounded
spaces with few function evaluations. For each episode, an
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initial 𝑧0 ∼ 𝒩 is sampled. The goal is to find a Δ𝑝∗ that
minimises −𝐼R,cap as predicted by the surrogate model. Op-
timisation is done once with and once without global min-
imisation. Both variants are evaluated over 1000 episodes.

For RL, three algorithms have been used: SAC, PPO and
TD3, all from the Stable Baselines 3 package [6]. They are
trained for 1 000 000 steps and evaluated over 10 000 epis-
odes. TD3 and SAC use normal-distributed action noise
with 𝜇 = 0, 𝜎 = 0.1.

The episodes work similarly to BOBYQA, except that the
RL agents adjust the parameter change Δ ⃗𝑝 with a series of
increments Δ(Δ ⃗𝑝𝑛) to find a point at which 𝐼R,cap > 𝐼nom

R,cap.
This avoids using the dynamics model iteratively, which
would accumulate prediction errors and become unstable.

The reward 𝑟𝑛 = 𝐼(𝑛)
R,cap − 𝐼nom

R,cap is always negative, except
for steps that end an episode successfully. Episodes also end
after 20 steps or if ‖𝑧‖2

2 grows beyond the domain on which
the intensity model has been trained.

RESULTS

Table 1: Evaluation Results. 𝑃 is the Fraction of Episodes
in which an Algorithm has Reached the Target 𝐼nom

R,cap = 10×
1010 Charges. 𝐿 is the Mean Number of Steps per Episode,
Δ𝐿 its Standard Deviation.

Algorithm 𝑃/% 𝐿 ± Δ𝐿
BOBYQA (Global) 46.3 2300 ± 500
BOBYQA 40.8 76 ± 18
SAC 36.7 15 ± 7
PPO 35.7 16 ± 6
TD3 33.3 15 ± 7

The results are summarised in Table 1. The highest suc-
cess rate is achieved by the globally optimising BOBYQA.
Classic BOBYQA shows slightly worse performance, but
cuts the number of function calls by a factor of 30. The RL
algorithms all show moderately worse performance while
cutting episode length by an additional factor of 4.5.

As Fig. 3 shows, the success rate depends greatly on the
beam intensity before optimization. In cases where the ma-
chine is only slightly mistuned (𝐼 init

R,cap > 8 × 1010 charges),
all algorithms perform about equally well with a success
rate of 𝑃 ≈ 95 %. It also shows that most of the unsuccess-
ful episodes are those for which almost no beam is injected.

Figure 4 shows that BOBYQA restores some amount of
intensity in almost all cases. By contrast, the RL agents end
about 20 % of episodes with almost no intensity. They also
show a sharp drop-off at 𝐼nom

R,cap because this is where their
episodes are terminated in any case.

CONCLUSION
A reasonably accurate surrogate model of the LEIR ma-

chine has been trained using a 𝛽-VAE and two MLPs.
We find that BOBYQA recovers some amount of beam

in almost all cases, even if almost no beam is captured after
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Figure 3: Success rate of the various algorithms over initial
beam intensity 𝐼 init

R,cap. For each point, this selects evaluation
episodes with at least this 𝐼R,cap before optimization and
shows the fraction of them in which 𝐼nom

R,cap has been reached.
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Figure 4: ROC curve of the various algorithms. It shows
the fraction of the evaluation episodes in which at least the
given 𝐼R,cap has been reached.

injection. Global optimisation performs slightly better than
the default, but becomes prohibitively long on the real ma-
chine, where each data acquisition takes several seconds.

Conversely, if the machine is already close to the nom-
inal target intensity, all algorithms perform equally well. In
this case, RL algorithms reach the target in fewer than 20
steps, whereas BOBYQA needs 21 steps for its bootstrap-
ping phase alone.

During LEIR commissioning in the summer of 2022,
we plan to compare the surrogate model to the machine,
verify the BOBYQA results (in particular the success rate)
and evaluate the RL agents that have been trained off-line.
Another promising avenue to explore are model-based RL
agents that are trained on-line on the machine. The VAE
presented here will remain useful there, as it provides a
means to extract meaningful state information from the ob-
served Schottky spectra.
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