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Abstract
Numerical beam dynamics simulations are essential tools

in the study and design of particle accelerators, but they can
be prohibitively slow for online prediction during operation
or for systematic evaluations of new parameter settings. Ma-
chine learning-based surrogate models of the accelerator pro-
vide much faster predictions of the beam properties and can
serve as a virtual diagnostic or to augment data for reinforce-
ment learning training. In this paper, we present the first re-
sults on training a surrogate model for the low-energy section
at the Ferninfrarot Linac- und Test-Experiment (FLUTE).

INTRODUCTION
Compared to single beam dynamics, collective effects are

computationally more expensive to calculate. For example,
a detailed space charge particle tracking simulation often
takes minutes to run and thus makes parameter optimization
or training of machine learning algorithms on simulation
data very time consuming or even infeasible. A surrogate
model can be used to provide rapid evaluations and replace
the time-consuming simulations by approximating the out-
puts. Common methods to build a surrogate model include
Gaussian process regression, random forests, and deep neu-
ral networks (NN) [1–3]. In addition, surrogate models
could be used as virtual diagnostics, predicting valuable
information of the beam in a non-destructive way, e.g. the
longitudinal phase space of the electron bunches [4, 5]. In
this paper, we present the development of a neural network
surrogate model of the low-energy section at the Fernin-
frarot Linac- und Test-Experiment (FLUTE). We describe
the training process and compare the NN-predicted bunch
properties to both simulations and measurement data. Fi-
nally, we discuss applications of the surrogate model as an
online virtual diagnostic and as a training environment for
other algorithms.

TRAINING THE SURROGATE MODEL

Figure 1: Schematic layout of FLUTE low-energy section
with the inputs to the surrogate model marked with an orange
box. Figure adapted from [6].
∗ chenran.xu@kit.edu

Figure 1 shows the schematic layout of the low-energy sec-
tion of the the KIT linac-based test facility, FLUTE [7]. The
electrons are generated at the RF photoinjector and acceler-
ated up to 7 MeV. The input layer of the surrogate model NN
consists of 4 neurons representing the bunch charge, the RF
gun phase, the RF gun maximal gradient, and the solenoid
magnetic field. The output layer returns 6 scalar values rep-
resenting the bunch properties, namely the transverse beam
size 𝜎𝑥, bunch length 𝜎𝑧, mean energy 𝐸, relative energy
spread 𝜎𝐸, normalized transverse emittance 𝜖𝑥, and percent-
age of the remaining particles. These bunch properties can
also be measured using the diagnostic devices [8], so that
the model can be further retrained and fine-tuned to match
the measurement results.
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Figure 2: Architecture of the fully connected neural network.
The 4 machine parameters are fed into the neural network
with 3 hidden layers, each with 32 neurons.

Table 1: Input parameter range used to generate training data

Input Parameters Range Unit

Charge 1 to 30 pC
Gun phase 175 to 235 deg
Gun max. gradient 50 to 100 MV/m
Solenoid B-field 0.08 to 0.2 T

We use a fully connected feed-forward NN with 3 hid-
den layers, as shown in Fig. 2, each layer with 32 neurons
and the hyperbolic tangent function (tanh) as the activation
function. The size of the network is chosen to sufficiently
approximate the transfer map from photocathode to linac,
but not too large so that it fully memorizes the dataset. In
such a case, the network will not be able to generalize to
unseen scenarios. The NN is implemented using the open-
source library pyTorch [9]. The training data consists of 104

samples randomly selected from the parameter space listed
in Table 1. For each parameter setting, the bunch properties
are obtained via an ASTRA tracking simulation. The NN
training parameters are summarized in Table 2. The input
and output parameters are min-max normalized, mapped to
[0,1] intervals, to speed up the training process. The output
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normalization ensures that each predicted bunch property is
equally weighted in the loss calculation. We use the Adam
optimizer with a batch size of 64, initial learning rate of
10−3, and train for 200 epochs to prevent overfitting. The
loss function is defined as the mean squared error (MSE)
between the predicted and target bunch properties.

Table 2: Neural network training parameters

Hyperparameters Value

Loss function MSE
Batch size 64
Optimizer Adam
Learning rate 10−3

Epoch 200

The trained model is then evaluated on test data, con-
sisting of 103 random parameter settings to which the NN
is not trained on. The prediction error is shown in Fig. 3,
where almost all the predicted values show good agreement
to the target outputs. The prediction of the mean energy
𝐸 is slightly lower than the target values, but the overall
discrepancy is still well under 0.1 MeV.

−0.5 0.0 0.5

σx [mm]

0

200

400

600

C
ou

nt
s

(a)

−0.1 0.0 0.1

σz [mm]

(b)

−0.1 0.0 0.1

E [MeV]

(c)

−0.1 0.0 0.1

σE [%]

0

200

400

600

C
ou

nt
s

(d)

−2.5 0.0 2.5

Nremain [%]

(e)

−0.2 0.0 0.2

εx,y [mm mrad]

(f)

Figure 3: Prediction error on the test data for each output
variable: (a) transverse beam size, (b) bunch length, (c) mean
energy, (d) relative energy spread, (e) remaining particles,
and (f) transverse emittance.

Once the surrogate model is trained, it can predict the
beam properties very fast. As an example, Fig. 4 shows a
2D subspace of the 4D input parameter space of the trans-
verse beam size 𝜎𝑥 depending on the solenoid B-field and
bunch charge. The left plot is generated by ASTRA sim-
ulations with a 10×10 grid, which takes ∼5 h for serial ex-
ecution. The right plot is a 50×50 grid predicted by the
trained NN surrogate, which only takes milliseconds in to-
tal. As shown in the figure, the NN-predicted beam sizes
have a similar structure as the ASTRA simulation results,
e.g. the solenoid field required to minimize the beam size
at the screen is slightly increasing with the bunch charge
due to space charge effects. Deviations from the ideal field

strength lead to larger 𝜎𝑧 due to under- or over-focusing of
the bunch. The minimum beam sizes, marked as white stars,
are very comparable, with 𝜎𝑥 = 0.166 mm for the ASTRA
simulation and 𝜎𝑥 = 0.164 mm for the NN prediction.
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Figure 4: Example of 2D subspace with fixed RF gun phase
at 200 deg and gradient 75 MV/m by ASTRA 10×10-grid
scan (left) and NN surrogate 50×50-grid prediction (right):
transverse beam size 𝜎𝑥 depending on solenoid B-field and
bunch charge, where the minima are marked as white stars.

SURROGATE MODEL APPLICATIONS
Virtual Diagnostics

One goal of this study is to use the surrogate model as
an online virtual diagnostic for accelerator operation. This
could provide shot-to-shot predictions of the beam param-
eters in a non-destructive manner. For example at FLUTE
the energy is measured destructively with a spectrometer
dipole magnet, also shown in Fig. 1. The bending angle
of the dipole magnet is proportional to the bunch energy
for a fixed magnetic field. By varying the magnetic field,
the bunch can be deflected and observed on an yttrium alu-
minium garnet (YAG) screen in the spectrometer arm, where
the energy can be determined from the bunch position. Even
with an automated procedure, an energy measurement could
take up to several minutes, because the dipole needs to be
cycled, so that the remnant field does not further affect the
normal operation. In order to validate the surrogate model,
we compared its results to energy measurements [10] as
shown in Fig. 5. For each data point, an ASTRA tracking
simulation and surrogate model prediction is performed with
the corresponding accelerator parameters. The computation
time of the surrogate model is within a millisecond, which is
again negligible compared to ∼1 h of required ASTRA sim-
ulation time and several hours for actual beam time. Both,
the surrogate predictions and the ASTRA simulation results,
correspond very well to the measurement data with a de-
viation of under 0.1 MeV. It is interesting to note that the
NN was only trained with data within the intervals shown
in Table 1, particularly with a minimum gun gradient of
50 MV/m. This corresponds to a gun power of ∼3.8 MW, so
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the model extrapolated to an unseen parameter range for the
first few points in Fig. 5(a), showing good agreement with
the measurement results. To further improve the prediction
results, the NN model can be partially retrained on mea-
surement data. This could not only reduce the discrepancy
between simulation and measurement, but also mitigate the
long-term drifts of the accelerator components.
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Figure 5: Energy measurements (green triangles) for (a) 
a power scan and (b) a phase scan of the gun, compared 
to ASTRA simulations (blue squares) and surrogate model 
predictions (orange stars). The residuals are the differences 
to the measurement values. Each measurement is averaged 
from 20 shots with a standard error of ca. 0.1%.

Fast Evaluation for Other Algorithms
Recently, reinforcement learning (RL) algorithms have 

been used in the accelerator physics field for the automa-
tion of control tasks [11, 12], such as autonomous beam 
focusing at ARES [13]. Autonomous bunch control with 
RL is also being considered at FLUTE. RL can also be used 
for more ambitious goals such as beyond human level con-
trol tasks [14–16]. However, the training process of the RL 
agents is notoriously time consuming, often taking millions 
of steps. Therefore, it is unpractical to train RL directly on 
computationally intensive physics simulations or accelera-
tors with a low repetition rate. Thanks to the fast compu-
tation time of the surrogate model, it can also be used as a 
training environment for reinforcement learning. Although 
the surrogate model has certain discrepancy compared to the 
actual accelerator, training on it will allow the RL agent to 
learn roughly the policy and minimize the beam time needed 
to retrain on the accelerator.

Training a single surrogate model for the whole accelera-
tor including every magnet is unpractical, as the minimum
number of training samples required to reasonably represent
the accelerator increases exponentially with the number of
parameters. For example, generating 104 training samples
used in this study took about 10 hours, whereas 108 simula-
tions are needed to generate samples with same density for
8 input parameters. This corresponds to about 14 years of
computation time on the same system. One way to mitigate
this is by reducing the parameter space via training surro-
gate models around some fixed working points. Otherwise,
one can also train different models for different stages at the
accelerator and connect them for a start-to-end prediction.
Despite these limitations, the low-energy section surrogate
model can also be used to speed up the optimization of other,
more sample efficient algorithms of the full accelerator. For
instance, we also developed a Bayesian optimization (BO) al-
gorithm to optimize for intense THz radiation at FLUTE [17].
Due to its exploratory behaviour, the algorithm sometimes
samples at undesired operational settings. The surrogate
model presented in this study can optimally constrain the
parameter space to explore by excluding the settings where
the electron bunch has, for example, a large beam size or
a large energy deviation when entering the linac. In this
way the optimization can be more efficient compared to the
presented BO attempt.

CONCLUSION AND OUTLOOK
We trained a NN surrogate model for the low-energy sec-

tion at FLUTE, which is able to predict important bunch
properties like beam size and energy fast and accurately. The
prediction results are compared to both ASTRA simulations
and measurement results, showing very good agreement.
We plan to integrate the surrogate model prediction into the
EPICS control system used at FLUTE, so that this could be
a daily support tool used in accelerator operation. In the
future, more input parameters will be added to the model by
reducing the parameter ranges. The outputs will be extended
from scalar variables to complete phase space images of
the electron bunch. Finally, we plan to build another sur-
rogate model for the second part of FLUTE, which takes
the predicted phase space information of the low-energy
section model as input and further predicts the bunch prop-
erties at the end of the accelerator. With those two surrogate
models connected, we can perform online optimization and
tailor the bunch properties to meet different experimental
requirements.
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