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Abstract
Rapid advances in superconducting magnets and related

accelerator technology opens many unexplored possibili-
ties for future synchrotron designs. We present an efficient
method to probe the feasible parameter space of synchrotron
lattice configurations. Using this method, we can converge
on a suite of optimal solutions with multiple optimisation
objectives. It is a general method that can be adapted to
other lattice design problems with different constraints or
optimisation objectives. In this method, we tackle the lattice
design problem using a multi-objective genetic algorithm.
The problem is encoded by representing the components of
each lattice as columns of a matrix. This new method is
an improvement over the neural network based approach in
terms of computational resources. We evaluate the perfor-
mance and limitations of this new method with benchmark
results.

INTRODUCTION
The high level goal of this work is to assess whether the

‘art’ of lattice design can be economically achieved by a
computer without assuming existing standard lattice con-
figurations known to accelerator physicists. This paper is
a continuation of the effort to develop an automated lattice
optimisation algorithm. In the previous implementation of
this algorithm [1], a neural network based approach was
used to generate new lattice structures. There were two main
problems with the neural network based approach. Firstly,
new lattices were generated piece-wise based on a feedback
loop controlled by tracking the motion of a test particle. This
required each successful neural network to have a priori en-
coded values to produce the exact feedback values in order to
create a desirable lattice. This is possible in principle, how-
ever this system is an overly complicated mapping between
the optimisation quantities and the actual machine lattice
structure. Secondly, the neural networks are very sensitive
to small perturbations of the node values and resulted in
drastically different lattice structures. Therefore it becomes
computationally expensive to optimise the neural network
values for target lattice structures with a large number of
elements. The work for this paper tackles both of these
problems by introducing a different method for generating
lattices. In addition, the newest version of the genetic algo-
rithm was implemented to improve the performance when
optimising higher dimensional objectives.
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LATTICE MATRIX ENCODING
One major challenge with applying any kind of optimisa-

tion algorithm is how to represent the problem and parse it
to the algorithm, this is referred to as the encoding of the
problem. A matrix encoding method was used in this work,
such that any lattice structure with 𝑛 elements and at most 𝑝
attributes per element can be represented by a 𝑝 × 𝑛 matrix.
For example, a simple FODO cell with separate function
dipole magnets is represented by an 8 × 4 matrix as shown
in Fig. 1. Each column explicitly represents a different el-
ement of the lattice including empty drift spaces (E). The
rows encapsulate all the attributes needed to describe every
element in the lattice, where k0 and k1 are the dipole and
quadrupole coefficients as used by MADX [2].

Element QF E B E QD E B E

k0 0 0 1.07 0 0 0 1.07 0

k1 0.23 0 0 0 -0.23 0 0 0

Length 0.3 0.43 0.87 0.43 0.3 0.43 0.87 0.43

Figure 1: Example matrix encoding of a FODO cell with
separate function dipoles.

It should be noted that this matrix encoding can include
any number of attributes by adding more rows, such as higher
order coefficient terms of non-linear magnets. Also, it does
not matter to the optimisation algorithm where the actual
starting point of the lattice is defined. This property is partic-
ularly useful when optimising for a periodic structure such
as a ring.

As part of the optimisation algorithm, the aim is to probe
as much of the available parameter space as possible. In
other words: to explore lattice configurations that we might
not think would be stable based on our experience. This calls
for a method to randomly sample from the entire parameter
space that is bounded by a few basic design requirements
such as the total bending angle or betatron tune. Note that
there is no constraint on the number of magnetic elements or
the total length of arc. Using the matrix encoding method,
it is possible to initialise a collection of random lattice struc-
tures by building the lattices one element at a time. This
means, starting each lattice matrix from a randomly chosen
element (drift, dipole, quadrupole, or combined function
dipole) and randomly choosing the attribute values neces-
sary for that element. This process is repeated by adding
new columns to the lattice matrices until the total bending
angle of the lattice exceeds the requirement.
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GENETIC ALGORITHM
The principle for the multi-objective genetic algorithm

(MOGA) applied in this work is based on Darwinian evo-
lution. The fittest members of a population are most likely
to survive or pass on their traits to future generations as
the population evolves. The algorithm used in this work
is the constrained and adaptive version of the reference-
point-based many-objective evolutionary algorithm (NSGA-
III) [3, 4]. Compared to algorithms applied in previous
works [1], NSGA-III has improved performance at preserv-
ing population diversity for problems with higher dimen-
sional objectives (𝑁 > 3) as well as reduced computation
resource needs. Specifically, NSGA-III allows the user to
define a set of reference points within the objective space
and change the selection pressure based on the population
distribution around each reference point.

A brief outline of the custom implementation in context
of this work is provided below, specifics of the NSGA-III
are not reproduced here.

1. Build a population of 𝑁 randomly initialised lattice
matrices based on the required total bending angle.

2. Evaluate the one-turn matrix, objective values, and
penalty values for each new member of the population.

3. Sort the population into non-domination fronts using
non-dominated sorting.

4. Initialise new generation of 𝑅 randomly initialised ma-
trices and 𝑁−𝑅 offsprings from the previous generation
using genetic operators.

5. Evaluate the one-turn matrix, objective values, and
penalty values for each new member.

6. Rank the combined population of 2𝑁 members and
associate each member with the closest reference point.

7. Select 𝑁 members starting from the first non-
domination front. For the last front to be included,
select members that would maximise the diversity of
associated reference points.

8. Adaptively change the reference point positions to re-
duce over clustering around any one point.

9. Start new generation and repeat steps 4-8.

Non-Dominated Sorting and Genetic Operators
NSGA-III and previous versions of this algorithm all rely

on the idea of non-domination levels, which is a relative mea-
sure of the constraint violation and objective satisfaction of
the members of a population. As a result of the lattice matrix
encoding and the random initialisation process, a large por-
tion of the initial population corresponds to unstable lattice
structures. This creates a problem of how to quantify the
degree of divergence between unstable lattices. One naive
solution is using the trace value of the first order one-turn
transfer matrix Tr(𝑀1). As our results in the next section
demonstrate, Tr(𝑀1) is an effective measure of divergence.
Our algorithm is able to reach stable lattice structures by
favouring unstable lattices with smaller Tr(𝑀1) values.

In addition to the original NSGA-III constrained-dominate
definition, we added the following. A member p is defined

to constrained-dominate another member q if any of the
following is true.

• If p is stable in at least one transverse plane and q is
unstable in both planes.

• If both are unstable in one plane, but Tr(𝑀1) of p in
the unstable plane is smaller then that of q.

• If both are unstable in both planes, but the sum of
Tr(𝑀1) of p in both planes is smaller then that of q.

The crossover and mutation operators are used to create
new lattice matrices from existing members for each genera-
tion of the algorithm. The crossover operator selects pairs
of matrices from the parent population and creates two new
matrices by swapping columns of the parent matrices at
the same crossover point. A binary tournament selection
process [5] is used to select parent pairs from a randomly
selected subset of the population, the non-domination rank
is used as the comparison criterion and the size of the subset
correlates to the selection pressure. New matrices created
by the crossover operator are neither guaranteed to result in
better lattice structures compared to their parents nor even
stable lattices, however this does not seem to have significant
impact on the convergence of the algorithm and can be im-
proved in the future by applying a repair operator [6]. One
limitation of the crossover operator is that it does not allow
for subtraction of elements from existing matrices, therefore
the number of magnetic elements in new matrices can only
increase in number. An additional lattice simplification step
could be added to the algorithm later if desired.

The mutation operator only acts on a single lattice matrix
at a time, it randomly changes the attribute of a randomly
selected position on the matrix within the bounds of allowed
values for that position. Attributes on the same column are
also changed as needed to reflect the mutated attribute. For
example, if the Element attribute was mutated from QF to
CF on the column [QF, 𝑘0 = 0, 𝑘1 = 0.75, 𝑙 = 0.3], then a
new non-zero 𝑘0 attribute would also be generated for that
column.

RESULTS
We report the results of a benchmark study carried out to

check the performance of the algorithm. For this study, the
optimisation objectives were the following.

• 𝑓1: Minimise max(𝛽𝑥).
• 𝑓2: Minimise max(𝛽𝑦).
• 𝑓3: Minimise number of segments.
• 𝑓4: Minimise number of magnetic elements.
While the constraints were set to mimic a long closed

dispersion arc.
• Total bending angle, 𝐵tot = 180◦.
• Horizontal tune, 𝑄1 = 0.836.
• Initial(𝛽, 𝛼, 𝐷, 𝐷𝑝) = Final(𝛽, 𝛼, 𝐷, 𝐷𝑝).

Each constraint violation is normalised using the sigma func-
tion (|𝑥 |/(1+ |𝑥 |)) and the total penalty value is calculated by
summing the normalised constraint violations. A maximum
penalty tolerance of 0.2 was used to select feasible mem-
bers from the population. Note the vertical tune was left
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Figure 2: (left) The solid line shows the population average penalty value, the dashed and dotted lines are the population
average horizontal and vertical Tr(𝑀1) values. (mid) Feasible members projected onto 3D objective space, and (right) 2D
objective space. The colours from blue to yellow denotes the evolution from generation 1 to 1000.

unconstrained to allow an extra degree of freedom such that
the algorithm can populate the Pareto front in the objective
space, rather than confined to a single solution that would
minimise the constraint violation for a specific vertical tune.
A population of 288 random members were initialised and
allowed to evolve for 1000 generations. Initially, the objec-
tive space was evenly divided into 10 partitions along each
objective and a set of 286 reference points were generated
to cover the 4D simplex formed by the partitions [7]. The
population size was chosen to maximise the efficiency of
the reference point association procedure following [4].

The algorithm was able to converge to stable lattice struc-
tures within 20 generations using the Tr(𝑀1) ranking method
as shown on Fig. 2 (left). Interestingly, the population aver-
age penalty value on Fig. 2 (left) sharply decreases around
generation 500, then slowly increases towards generation
1000. The sharp drop can be correlated to a sudden success
in matching the total bending angle constraint. While the
slow increase after generation 500 is the algorithm attempt-
ing to minimise the objectives while exploiting the tolerance
range set for the penalty value. Figures 2 (mid) and 2 (right)
shows the progression of the population getting closer to the
Pareto optimum front over the generations. The distribution
on the (𝛽𝑥 max, 𝛽𝑦 max) plane matches our expectation of
a trade-off relationship. One interesting example of the best
performing member is shown in Fig. 3. Although not feasi-
ble to build, it is interesting that the algorithm has found a
design with long dipole segments and a few closely packed
almost alternating focusing segments in between.

The algorithm presented in this work is able to efficiently
converge to stable lattice structures and populate the Pareto
front of the supplied objectives. However, this feature is also
the limitation of the algorithm, since it will attempt to ‘cheat’
the objectives by slightly tweaking the attributes of a feasible
member in order to fill out the objective space. This is in
contrast to the original intent of searching for completely
different lattice structures to fill out the objective space. As a
result, members in the first non-domination front all feature
a similar structure as shown in Fig. 3.

Having prior knowledge of lattice design and accelera-
tors more generally, there are now a number of other im-
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Figure 3: Lattice functions of a member in the first non-
dominated front, representing one Pareto trade-off point in
the objective space. Green segments are pure dipoles, yellow
and blue segments are horizontally focusing and defocusing
combined function dipoles respectively.

provements to be made to the basic algorithm, these are the
following. Initialise new lattice matrices conditionally to
better represent physical requirements such as leaving extra
drift space between each new magnetic element. Introduce
repair operator after combination and mutation operations
to improve the likelihood of creating new stable structures.
Optimise the selection pressure to preserve diversity of candi-
date structures while maintaining a reasonable convergence
rate towards stable candidates. Seeding the algorithm using
several stable lattice structures or combining the converged
stable candidate pool from several different random initiali-
sations to improve diversity of structures.

CONCLUSION
We presented an improved method to generate lattice struc-

tures using a lattice matrix encoding method. Our imple-
mentation of NSGA-III is capable of finding a Pareto front
for a set of given constraints, however it is limited by the lack
of a penalty function that measures the diversity of lattice
layouts. We plan to address this limitation in future works
and apply the algorithm to a full ring structure with slow
extraction constraints.
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