MOOYSP —  Contributed Orals: Beam Dynamics and EM Fields   (13-Jun-22   12:10—12:50)
Chair: R.T. Dowd, AS - ANSTO, Clayton, Australia
Paper Title Page
MOOYSP1 Impact of Longitudinal Gradient Dipoles on Storage Ring Performance 30
 
  • F. Zimmermann, Y. Papaphilippou, A. Poyet
    CERN, Meyrin, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730 (iFAST).
Innovative new magnets with longitudinally varying dipole field are being produced for installation in a few modern light-source storage rings. We investigate some of the associated beam-dynamics issues, in particular the photon spectrum and quantum fluctuation associated with such magnets, and we study whether the resulting equilibrium emittance may deviate from the value expected in the long-magnet limit.
 
slides icon Slides MOOYSP1 [2.364 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYSP1  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOYSP2 Measurements of Collective Effects Related to Beam Coupling Impedance at SIRIUS 34
 
  • F.H. de Sá, M.B. Alvespresenter, L. Liu
    LNLS, Campinas, Brazil
 
  Sirius is the new storage-ring-based 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS) at the Brazilian Center for Research in Energy and Materials (CNPEM). In ultralow emittance storage rings such as Sirius, the small radius of the vacuum chamber gives rise to strong beam coupling impedances which significantly alter the stored beam dynamics. In this work, we present the single-bunch measurements made so far to characterize such effects and compare the results with those simulated using the impedance budget built during the storage ring design.  
slides icon Slides MOOYSP2 [2.496 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYSP2  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)