Keyword: higher-order-mode
Paper Title Other Keywords Page
TUPOMS044 Dielectric Loaded THz Waveguide Experimentally Optimized by Dispersion Measurements GUI, experiment, electron, acceleration 1526
 
  • M.J. Kellermeier, R.W. Aßmann, K. Flöttmann, F. Lemery
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Emerging high power THz sources pave the road for THz- driven acceleration of ultra-short bunches, and enable their manipulation for diagnostic purposes. Due to the small feature sizes of THz-guiding devices new methods are necessary for their electromagnetic characterization. A new technique has recently been developed which characterizes THz waveguides with respect to their dispersion relations and attenuation. Here, the method is applied to circular waveguides, partially filled with polymer capillaries of different thicknesses, to find a suitable size for THz driven streaking at 287 GHz. Further, rough 3d-printed metallic waveguides are measured to study the effect of roughness on attenuation and phase constant. In general, additive manufacturing techniques show promise for advanced integrated designs of THz driven structures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS044  
About • Received ※ 05 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)