Keyword: free-electron-laser
Paper Title Other Keywords Page
TUPOPT010 Virtual Commissioning of the European XFEL for Advanced User Experiments at Photon Energies Beyond 25 keV Using Low-Emittance Electron Beams FEL, electron, photon, laser 1018
 
  • Y. Chen, F. Brinker, W. Decking, M. Scholz, L. Winkelmann, Z.H. Zhu
    DESY, Hamburg, Germany
 
  Funding: The authors acknowledge support from Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany), a member of the Helmholtz Association HGF and European XFEL GmbH (Schenefeld, Germany).
Growing interests in ultra-hard X-rays are pushing forward the frontier of commissioning the European X-ray Free-Electron Laser (XFEL) for routine operation towards the sub-ångström regime, where a photon energy of 25 keV (0.5 ångström) is desired. Such X-rays allow for larger penetration depths and enable the investigation of materials in highly absorbing environments. Delivering the requested X-rays to user experiments is of crucial importance for the XFEL development. Unique capabilities of the European XFEL are formed by combining a high energy linac and the long variable-gap undulator systems for generating intense X-rays at 25 keV and pushing the limit even further to 30 keV. However, the FEL performance relies on achievable electron bunch qualities. Low-emittance electron bunch production, and the associated start-to-end modelling of beam physics thus becomes a prerequisite to dig into the XFEL potentials. Here, we present the obtained results from a virtual commissioning of the XFEL for the user experiments at 25 keV and beyond, including the optimized electron bunch qualities at variable accelerating cathode gradients and lasing studies under different conditions.
*Appl. Sci. 11(22), 10768 (2021)
**Phys. Rev. Accel. Beams 23, 044201(2020)
***NIM A 995, 11 165111 (2021)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT010  
About • Received ※ 19 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT019 FERMI FEL-1 Upgrade to EEHG FEL, laser, electron, simulation 1044
 
  • C. Spezzani, E. Allaria, L. Badano, D. Castronovo, P. Cinquegrana, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, M. Ferianis, G. Gaio, F. Gelmetti, L. Giannessi, G. Kurdi, M. Lonza, C. Masciovecchio, I. Nikolov, G. Penco, P. Rebernik Ribič, C. Scafuri, N. Shafqat, P. Sigalotti, F. Sottocorona, S. Spampinati, L. Sturari, M. Trovò, M. Veronese, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. Perosa
    Università degli Studi di Trieste, Trieste, Italy
 
  The Fermi free-electron laser (FEL) facility is operating since 2010 providing the user community with ultrashort pulses in the VUV- XUV range. Using the High Gain Harmonic Generation (HGHG) setup, nearly transform-limited pulses with gigawatt peak power are made available. Furthermore, several multicolor and coherent control schemes are possible and highly required from the user community. To meet the request of extending the spectral range over the whole water window, an upgrade strategy of the FERMI facility has recently initiated. During the first phase of the upgrade, the single cascade FEL-1 will be adapted to operate either in Echo Enabled Harmonic Generation (EEHG) or in HGHG. Required modifications can be achieved with limited impact on FERMI operations and will improve FEL-1’s spectral range, spectral quality and flexibility. The second phase includes modification of the FEL-2 setup and will benefit from the experience gained with phase 1. The two phases will proceed in parallel to the linac upgrade aiming at extending the beam energy to 1.8 GeV. We report here details on the upgrade of the FEL-1 foreseen to provide light to users in the new configuration by spring 2023.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT019  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)