Keyword: FFAG
Paper Title Other Keywords Page
MOPOST027 The Zgoubidoo Python Framework for Ray-Tracing Simulations with Zgoubi: Applications to Fixed-Field Accelerators lattice, closed-orbit, simulation, focusing 118
 
  • M. Vanwelde, E. Gnacadja, C. Hernalsteens, N. Pauly, E. Ramoisiaux, R. Tesse
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  The study of beam dynamics in accelerators featuring main magnets with complex geometries such as Fixed Field Accelerators (FFAs) requires simulation codes allowing step-by-step particle tracking in complex magnetic fields, such as the Zgoubi ray-tracing code. To facilitate the use of Zgoubi and to allow readily processing the resulting tracking data, we developed a modern Python 3 interface, Zgoubidoo, using Zgoubi in the backend. In this work, the key features of Zgoubidoo are illustrated by detailing the main steps to obtain a non-scaling FFA accelerator from a scaling design. The results obtained are in excellent agreement with prior results, including the tune computation and orbit shifts. These results are enhanced by Zgoubidoo beam dynamics analysis and visualization tools, including the placement of lattice elements in a global coordinate system and the computation of linear step-by-step optics. The validation of Zgoubidoo on conventional scaling and non-scaling FFA designs paves the way for future uses in innovative FFA design studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST027  
About • Received ※ 16 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS004 Achromatic Gantry Design Using Fixed-Field Spiral Combined-Function Magnets proton, lattice, simulation, emittance 2941
 
  • R. Tesse, E. Gnacadja, C. Hernalsteens, N. Pauly, E. Ramoisiaux, M. Vanwelde
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  Arc-therapy and flash therapy are promising proton therapy treatment modalities as they enable further sparing of the healthy tissues surrounding the tumor site. They impose strong constraints on the beam delivery system and rotating gantry structure, in particular in providing high dose rate and fast energy scanning. Fixed-field achromatic transport lattices potentially satisfy both constraints in allowing instant energy modulation and sufficient transmission efficiency while providing a compact footprint. The presented design study uses fixed-field magnets with spiral edges respecting the FFA scaling law. The cell structure and the layout are studied in simulation and integrated in a compact gantry. Results and further optimizations are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS004  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)