Paper | Title | Page |
---|---|---|
THPOTK048 | Radiation Load Studies for the FCC-ee Positron Source with a Superconducting Matching Device | 2879 |
SUSPMF118 | use link to see paper's listing under its alternate paper code | |
|
||
For an electron-positron collider like FCC-ee, the production of positrons plays a crucial role. One of the design options considered for the FCC-ee positron source employs a superconducting solenoid made of HTS coils as an adiabatic matching device. The solenoid, which is placed around the production target, is needed to capture positrons before they can be accelerated in a linear accelerator. A superconducting solenoid yields a higher peak field than a conventional-normal conducting magnetic flux concentrator, therefore increasing the achievable positron yield. In order to achieve an acceptable positron production, the considered target is made of tungsten-rhenium, which gives also a significant flux of un-wanted secondary particles, that in turn could generate a too large radiation load on the superconducting coils. In this study, we assess the feasibility of such a positron source by studying the heat load and long-term radiation damage in the superconducting matching device and surrounding structures. Results are presented for different geometric configurations of the superconducting matching device. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK048 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOTK052 | Muon Collider Graphite Target Studies and Demonstrator Layout Possibilities at CERN | 2895 |
|
||
Muon colliders offer enormous potential for research of the particle physics frontier. Leptons can be accelerated without suffering large synchrotron radiation losses. The International Muon Collider Collaboration is considering 3 and 10 TeV (CM) machines for a conceptual stage. In the core of the Muon Collider facility lays a MW class production target, which will absorb a high power (1 and 3 MW) proton beam to produce muons via pion decay. The target must withstand high dynamic thermal loads induced by 2 ns pulses at 5-50 Hz. Also, operational reliability must be guaranteed to reduce target exchanges to a minimum. Several technologies for these systems are being studied in different laboratories. We present in this paper the results of a preliminary feasibility study of a graphite-based target, and the different layouts under study for a demonstrator target complex at CERN. Synergies with advanced nuclear systems are being explored for the development of a liquid metal target. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK052 | |
About • | Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOTK053 | Foiled Again: Solid-State Sample Delivery for High Repetition Rate XFELs | 2899 |
|
||
Funding: Department of Energy DE-SC0009914 and DE-AC02-76SF00515 XFELs today are capable of delivering high intensity pulse trains of x-rays with up-to MHz to sub-GHz frequency. These x-rays, when focused, can ablate a sample in a single shot, requiring the sample material to be replaced in time for the next shot. For some applications, especially serial crystallography, the sample may be renewed as a dilute solution in a high speed jet. Here, we describe the development and characterization of a system to deliver solid state sample material to an XFEL nanofocus. The first application of this system will be an x-ray laser oscillator operating at the copper Kα line with a ~30 ns cavity. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK053 | |
About • | Received ※ 06 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOMS038 | Spallation Target Optimization for ADS by Monte Carlo Codes | 3049 |
SUSPMF119 | use link to see paper's listing under its alternate paper code | |
|
||
Accelerator Driven Systems are advanced systems for the use of Thorium as fuel, aiming to reduce nuclear waste through transmutation. The spallation target, which is responsible for producing neutrons, is one of the main parts of the ADS system. In this research, neutronic parameters of spallation targets consisting of several materials LBE, Mercury, Lead, Mercury on the cylindrical, box, and conic shapes using Monte Carlo codes (FLUKA, PHITS, MCNPX) was investigated. Energy Deposition and spallation neutron yield of spallation target with different shapes and dimensions have been calculated to optimization of the target. According to the results, the neutron yield values from MCNPX and PHITS are similar and it’s close to the experimental result. On the other hand, the error rate of the values in FLUKA is higher. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS038 | |
About • | Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |