MC7: Accelerator Technology
T16: Pulsed Power Technology
Paper Title Page
THPOST040 Commissioning of an X-Band Cavity for Longitudinal Phase Space Linearization at UCLA PEGASUS Laboratory 2533
 
  • P.E. Denham, P. Musumeci, A. Ody
    UCLA, Los Angeles, USA
 
  This paper dis­cusses the com­mis­sion­ing of an X-band (9.6 Ghz) lin­earizer cav­ity at the UCLA PE­GA­SUS beam­line. The pho­toin­jec­tor gun and booster linac op­er­ate at S-band (2.856 GHz) and the lin­earizer cav­ity can be used to com­pen­sate tem­po­rally cor­re­lated en­ergy spread in­her­ited by the use of rel­a­tively long (many ps) laser pulses at the pho­to­cath­ode. The cav­ity is com­prised of 7 cells for a total length of a 9.45 cm, and is in­stalled in the drift sec­tion be­tween the gun and the linac. It can be used to re­move higher order cor­re­la­tions and min­i­mize the beam en­ergy spread of 13 ps long beams to 10-4.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST040  
About • Received ※ 08 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK015 Solid-State Pulsed Power Supply for a 100 keV Electron Source of the New Synchrotron Facility in Thailand 2803
 
  • W. Phacheerak, S. Bootiew, T. Chanwattana, Ch. Dhammatong, N. Juntong, K. Kittimanapun
    SLRI, Nakhon Ratchasima, Thailand
  • K. Manasatitpong
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
 
  The new syn­chro­tron light source pro­ject in Thai­land will uti­lize a thermionic DC elec­tron gun. The max­i­mum op­er­a­tion of the gun is 100 keV, which re­quires a pulsed power sup­ply of 100kV. The pre­sent syn­chro­tron ma­chine uses a con­ven­tional de­sign of the gun power sup­ply. To im­prove the high volt­age pulsed qual­ity, the solid-state de­sign of the gun power sup­ply is uti­lized. The out­put pulse width can be ad­justed eas­ily and the droop is less com­pared to the con­ven­tional de­sign. The de­signed out­put of 100 kV am­pli­tude with 5 µs pulsed width can be achieved with this de­sign. It also pro­duces a less droop of 1.8%. The de­sign process and re­sults will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK015  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK040 Few-Nanosecond Stripline Kickers for Top-Up Injection into PETRA IV 2858
 
  • G. Loisch, V. Belokurov, F. Obier
    DESY, Hamburg, Germany
 
  PETRA IV is the planned ul­tralow-emit­tance up­grade of the PETRA III syn­chro­tron light source at DESY, Ham­burg. The cur­rent base­line in­jec­tion scheme is an off-axis, top-up in­jec­tion with few-nanosec­ond stripline kick­ers, which would allow for ac­cu­mu­la­tion and least dis­tur­bance of ex­per­i­ments dur­ing in­jec­tion. Be­sides the re­quire­ments on kick-strength, field qual­ity, pulse rise-rate, and heat man­age­ment, two me­chan­i­cal de­signs with dif­fer­ent aper­tures are nec­es­sary, as the de­vices will be used for in­jec­tion and the trans­verse multi-bunch feed­back sys­tem. In this con­tri­bu­tion we will pre­sent the cur­rent sta­tus of 3D fi­nite el­e­ment sim­u­la­tions of elec­tro­mag­netic fields and heat­ing as well as the me­chan­i­cal de­sign and first pulse elec­tron­ics tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK040  
About • Received ※ 20 May 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK041 Development of Programmable Bipolar Multi kHz Kicker Drivers for Long Pulse Superconducting Electron Linacs 2862
 
  • J.L. Teichgräber, W. Decking, J. Kahl, F. Obier
    DESY, Hamburg, Germany
 
  Deutsches Elek­tro­nen-Syn­chro­tron DESY, Notkestrasse 85, 22607 Ham­burg, Ger­many Su­per­con­duct­ing cav­i­ties allow for long rf-pulses, which en­able the ac­cel­er­a­tion of thou­sands of elec­tron bunches within one rf-pulse. Due to tran­sient ef­fects, e.g. cou­pler kicks, eddy cur­rents or wake­fields, bunch prop­er­ties like the beam tra­jec­tory can change along the pulse train. To com­pen­sate for this, kicker sys­tems based on high-cur­rent op­er­a­tional am­pli­fiers have been de­vel­oped for the free elec­tron lasers Eu­ro­pean XFEL and FLASH at DESY in Ham­burg. Here, we pre­sent the lay­out of the kicker sys­tem, the setup of the pulse elec­tron­ics, and op­er­a­tional re­sults with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK041  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK042 Non-Linear Phenomena Studies in High-Gradient RF Technology for Hadrontherapy at IFIC 2865
SUSPMF117   use link to see paper's listing under its alternate paper code  
 
  • P.M.R. Martinez-Reviriego, C. Blanch Gutiérrez, D. Esperante Pereira, J. Fuster, N. Fuster-Martínez, B. Gimeno, D. Gonzalez-Iglesias, P. Martín-Luna
    IFIC, Valencia, Spain
 
  High-Gra­di­ent ac­cel­er­at­ing cav­i­ties are one of the main re­search lines in the de­vel­op­ment of com­pact lin­ear col­lid­ers. How­ever, the op­er­a­tion of such cav­i­ties is cur­rently lim­ited by non-lin­ear ef­fects that are in­ten­si­fied at high elec­tric fields, such as dark cur­rents and ra­di­a­tion emis­sion or RF break­downs. A new nor­mal-con­duct­ing High Gra­di­ent S-band Back­ward Trav­el­ling Wave ac­cel­er­at­ing cav­ity for med­ical ap­pli­ca­tion (v=0.38c) de­signed and con­structed at CERN is being tested at IFIC. In this paper, we pre­sent ex­per­i­men­tal mea­sure­ments and sim­u­la­tion of such non-lin­ear ef­fects. The main goal of these stud­ies is to es­tab­lish the vi­a­bil­ity of using these tech­niques in lin­ear ac­cel­er­a­tors, in order to im­prove our un­der­stand­ing in such ef­fects. The main goal of these stud­ies is to de­ter­mine the vi­a­bil­ity of using this tech­niques in lin­ear ac­cel­er­a­tors for hadron­ther­apy treat­ments in hos­pi­tals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK042  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK043 Mitigation of High Voltage Breakdown of the Beam Screen of a CERN SPS Injection Kicker Magnet 2868
 
  • M.J. Barnes, W. Bartmann, M. Díaz Zumel, L. Ducimetière, L.M.C. Feliciano, T. Kramer, V. Namora, T. Stadlbauer, D. Standen, P. Trubacova, F.M. Velotti, C. Zannini
    CERN, Meyrin, Switzerland
 
  The SPS in­jec­tion kicker mag­nets (MKP) were de­vel­oped in the 1970’s, be­fore beam in­duced power de­po­si­tion was con­sid­ered an issue. These mag­nets are very lossy from a beam im­ped­ance per­spec­tive: this is ex­pected to be an issue dur­ing SPS op­er­a­tion with the higher in­ten­sity beams needed for HL-LHC. A de­sign, with serig­ra­phy ap­plied to an alu­mina car­rier, has been de­vel­oped to sig­nif­i­cantly re­duce the broad­band beam cou­pling im­ped­ance and hence mit­i­gate the heat­ing is­sues. Dur­ing high volt­age pulse test­ing there were elec­tri­cal dis­charges as­so­ci­ated with the serig­ra­phy. De­tailed math­e­mat­i­cal mod­els have been de­vel­oped to aid in un­der­stand­ing the tran­siently in­duced volt­ages and to re­duce the mag­ni­tude and du­ra­tion of elec­tric field. In this paper, we dis­cuss the so­lu­tions im­ple­mented to mit­i­gate the elec­tri­cal dis­charges while main­tain­ing an ad­e­quately low beam-cou­pling im­ped­ance. In ad­di­tion, the re­sults of high volt­age tests are re­ported. The alu­mina sub­strate has a high sec­ondary elec­tron yield and thus elec­tron-cloud could be an issue, with SPS beam, if mit­i­gat­ing mea­sures were not taken: this paper also dis­cusses the mea­sures im­ple­mented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK043  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK044 Ultra-Fast Generator for Impact Ionization Triggering 2872
 
  • A.A. del Barrio Montañés, Y. Dutheil, T. Kramer, V. Senaj
    CERN, Meyrin, Switzerland
  • M. Sack
    KIT, Karlsruhe, Germany
 
  Im­pact ion­iza­tion trig­ger­ing can be suc­cess­fully ap­plied to stan­dard thyris­tors, thus boost­ing their dI/dt ca­pa­bil­ity by up to 1000x. This ground­break­ing trig­ger­ing re­quires ap­ply­ing sig­nif­i­cant over­volt­age on the an­ode-cath­ode of thyris­tor with a slew rate > 1kV/ns. Com­pact pulse gen­er­a­tors based on com­mer­cial off-the-shelf (COTS) com­po­nents would allow the spread of this tech­nol­ogy into nu­mer­ous ap­pli­ca­tions, in­clud­ing fast kicker gen­er­a­tors for par­ti­cle ac­cel­er­a­tors. In our ap­proach, the be­gin­ning of the trig­ger­ing chain is a HV SiC MOS with an ul­tra-fast su­per-boost­ing gate dri­ver. The super boost­ing of a 1.7kV rated SiC MOS al­lows to re­duce the MOS rise time by a fac­tor of > 25 (datasheet tr = §I{20}{ns} vs. mea­sured tr < 800ps, re­sult­ing in an out­put volt­age slew rate > 1kV/ns and an am­pli­tude > 1kV. Ad­di­tional boost­ing is ob­tained by a Marx gen­er­a­tor with GaAs diodes, reach­ing an out­put volt­age slew rate > 11kV/ns. The final stage will be a Marx gen­er­a­tor with medium size thyris­tors trig­gered in im­pact ion­iza­tion mode with suf­fi­cient volt­age and cur­rent rat­ing nec­es­sary for the trig­ger­ing of a big thyris­tor. This paper pre­sents the im­pact ion­iza­tion trig­ger­ing of a small size thyris­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK044  
About • Received ※ 16 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK045 Branch Module for an Inductive Voltage Adder for Driving Kicker Magnets with a Short Circuit Termination 2875
 
  • J. Ruf, M.J. Barnes, Y. Dutheil, T. Kramer
    CERN, Meyrin, Switzerland
  • M. Sack
    KIT, Karlsruhe, Germany
 
  For dri­ving kicker mag­nets ter­mi­nated in a short cir­cuit, a branch mod­ule for an in­duc­tive volt­age adder has been de­signed and as­sem­bled. The mod­ule has been de­signed for a max­i­mum charg­ing volt­age of 1.2 kV and an out­put cur­rent of 200 A con­sid­er­ing the cur­rent dou­bling due to the short cir­cuit ter­mi­na­tion. It fea­tures three con­sec­u­tive modes of op­er­a­tion: en­ergy in­jec­tion, free­wheel­ing, and en­ergy ex­trac­tion. There­fore, the topol­ogy of the branch mod­ule con­sists of two in­de­pen­dently con­trolled SiC MOS­FET switches and one diode switch. In order not to ex­tend the field rise time of the kicker mag­net sig­nif­i­cantly be­yond the mag­net fill time, the pulse must have a fast rise time. Hence, the switch for en­ergy in­jec­tion is dri­ven by a gate boost­ing dri­ver fea­tur­ing a half bridge of GaN HEMTs and a dri­ving volt­age of 80 V. Mea­sure­ments of the drain source volt­age of this switch showed a fall time of 2.7 ns at a volt­age of 600 V re­sult­ing in a volt­age rise time of 5.4 ns at the out­put ter­mi­nated with a re­sis­tive load. To meet both the rise time and cur­rent re­quire­ments, a par­al­lel con­fig­u­ra­tion of four SiC MOS­FETs was im­ple­mented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK045  
About • Received ※ 16 May 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)