Paper | Title | Page |
---|---|---|
WEPOMS016 | On the (Apparent) Paradox between Space-Charge Forces and Space-Charge Effects | 2268 |
|
||
With the advent of high-intensity linacs, space charge forces are now well known as a major issue causing undesirable effects on particle beam qualities like emittance growth or sudden losses. They should be stronger when there are more particles or when the latter are contained in a smaller volume. But a detailed examination of the beam along an accelerator show that space charge effects are weaker where the beam size is smaller. This article clarifies this paradox and revisits the recommendations on beam sizes in view of mitigating space charge effects. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS016 | |
About • | Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOMS017 | Space Charge Analysis for Low Energy Photoinjector | 2272 |
SUSPMF075 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work is supported by DARPA under Contract HR001120C0072, by DOE Contract DE-SC0009914 & DE-SC0020409, by the National Science Foundation Grant N.PHY-1549132 and by INFN through the project ARYA. Beam dynamics studies are performed in the context of a C-Band hybrid photo-injector project developed by a collab- oration between UCLA/Sapienza/INFN-LNF/RadiaBeam. These studies aim to explain beam behaviour through the beam-slice evolution, using analytical and numerical approaches. An understanding of the emittance oscillations is obtained starting from the slice analysis, which allows correlation of the position of the emittance minima with the slope of the slices in the transverse phase space (TPS). At the end, a significant reduction in the normalized emittance is obtained by varying the transverse shape of the beam while assuming a longitudinal Gaussian distribution. Indeed, the emittance growth due to nonlinear space-charge fields has been found to occur immediately after moment of the beam emission from the cathode, giving insight into the optimum laser profile needed for minimizing the emittance. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS017 | |
About • | Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |