MC5: Beam Dynamics and EM Fields
D06: Coherent and Incoherent Instabilities - Measurements and Countermeasures
Paper Title Page
MOOYSP2 Measurements of Collective Effects Related to Beam Coupling Impedance at SIRIUS 34
 
  • F.H. de Sá, M.B. Alves, L. Liu
    LNLS, Campinas, Brazil
 
  Sirius is the new storage-ring-based 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS) at the Brazilian Center for Research in Energy and Materials (CNPEM). In ultralow emittance storage rings such as Sirius, the small radius of the vacuum chamber gives rise to strong beam coupling impedances which significantly alter the stored beam dynamics. In this work, we present the single-bunch measurements made so far to characterize such effects and compare the results with those simulated using the impedance budget built during the storage ring design.  
slides icon Slides MOOYSP2 [2.496 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYSP2  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK046 Improved Longitudinal Performance of the LHC Beam in the CERN PS 2165
 
  • H. Damerau, V.D. Desquiens, A. Huschauer, A. Jibar, A. Lasheen, B. Mikulec, M. Morvillo, C. Rossi, B.J. Woolley
    CERN, Meyrin, Switzerland
 
  At the end of the 2018 run the intensity target for the High-Luminosity LHC (HL-LHC) had just been reached at extraction from the Proton Synchrotron (PS). In the framework of the LHC Injectors Upgrade (LIU) project additional RF improvements have been implemented during the 2019/2020 long shutdown (LS2), mainly impacting the impedance of the 10 MHz, 40 MHz, and 80 MHz RF systems. With the upgraded injection energy of 2 GeV (kinetic), also the intermediate plateau energy for RF manipulations has been increased. Following a campaign of beam studies throughout the 2021 run, a bunch intensity of up to 2.9·1011 p/b in trains of 72 bunches is achieved with the required longitudinal beam quality, surpassing the LIU target of 2.6·1011 p/b. The threshold of longitudinal quadrupolar coupled-bunch instabilities is increased during acceleration, but they are again observed at the flat-top. While dipolar coupled-bunch oscillations are well damped by a dedicated feedback system, the quadrupolar modes are suppressed by operating a 40 MHz system as an active higher-harmonic Landau cavity. The main commissioning steps are outlined, together with the key contributions to the improved beam performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK046  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK055 Beam Lifetime Measurements in Sirius Storage Ring 2186
SUSPMF072   use link to see paper's listing under its alternate paper code  
 
  • M.B. Alves, L. Liu, X.R. Resende, F.H. de Sá
    LNLS, Campinas, Brazil
 
  SIRIUS is the new storage ring-based 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS) at the Brazilian Center for Research in Energy and Materials (CNPEM). In ultralow emittance storage rings such as SIRIUS, the dominant contribution to the beam lifetime is due to large angle scattering between electrons within the same bunch, namely the Touschek effect. We used the strategy of storing two bunches simultaneously with different currents to measure their Touschek lifetime independently of other contributions, such as gas scattering. The measurements were carried out in different conditions of bunch current and RF voltage to compare the experimental results with those expected from theory and simulations for SIRIUS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK055  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK057 Towards Direct Detection of the Shape of CSR Pulses with Fast THz Detectors 2190
 
  • J.L. Steinmann, M. Brosi, E. Bründermann, A. Mochihashi, A.-S. Müller, P. Schreiber
    KIT, Karlsruhe, Germany
 
  Funding: We acknowledge in part support by the Helmholtz President’s strategic fund IVF "Plasma accelerators". This work is funded in part by the BMBF contract number: 05K19VKD.
Coherent synchrotron radiation (CSR) is emitted when the emitting structure is equal to or smaller than the observed wavelength. Consequently, these pulses are very short and most detectors respond with their impulse response, regardless of the pulse length and shape. Here we present single-shot measurements performed at the Karlsruhe Research Accelerator (KARA) using a fast real-time oscilloscope and Schottky barrier detectors sensitive in the sub-THz range. The time response of this setup to CSR pulses emitted by electron bunches during the microbunching instability is shown to be sensitive to the shape of the electron bunch. Our results show how, in the future, the shape of electron bunches can be directly measured using a straightforward setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK057  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK058 Experimental Study of the Transverse Mode Coupling Instability with Space-Charge at the CERN SPS 2193
 
  • X. Buffat, H. Bartosik
    CERN, Meyrin, Switzerland
 
  Past studies on the Transverse Mode Coupling Instability (TMCI) suggested that it can be suppressed in the presence of space-charge forces. Recent developments in this field show that for higher strength, space-charge forces leads to other types of instabilities. We investigate the characteristics of these instabilities by means of stability threshold measurements at the CERN SPS for various intensities, longitudinal and transverse emittances. These observations are compared to numerical tracking simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK058  
About • Received ※ 03 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 18 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)