MC4: Hadron Accelerators
A11: Beam Cooling
Paper Title Page
MOPOST025 Influences of the Transverse Motions of the Particles to the Recombination Rate of a Co-Propagating Electron-Ion System 112
 
  • G. Wang, D. Kayran, V. Litvinenko, I. Pinayev, P. Thieberger
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
For a system with the ion beam co-propagating with the electron beam, such as a traditional electron cooler or a Coherent electron Cooler (CeC), the recombination rate is an important observable for matching the energy of the electrons with the ions. In this work, we have developed the analytical expressions to investigate how the recombination rate depends on the energy difference of the two beams, with the influences from the transverse motions of the particles being considered. The analytical results are then used to analyze the measured recombination data collected during the CeC experiment in run 21 and run 22.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST025  
About • Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST026 Influences of the Energy Jitter to the Performance of the Coherent Electron Cooling 115
 
  • G. Wang, V. Litvinenko, J. Ma
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The bandwidth of a coherent electron cooling (CeC) system is typically two to three orders of magnitude higher than the traditional RF based stochastic cooling system, which make it possible to cool the ion bunches with high energy and high intensity. However, for such broad bandwidth, jitters in the energy of the cooling electron bunches present a serious challenge to the performance of the cooling system. In this work, we present analytical as well as simulation studies about the influences of the energy jitter to a CeC system with parameters relevant to the on-going CeC experiment at RHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST026  
About • Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK047 Cooling Performance in a Dual Energy Storage Ring Cooler 568
SUSPMF059   use link to see paper's listing under its alternate paper code  
 
  • B. Dhital, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • Y.S. Derbenev, D. Douglas, G.A. Krafft, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: EIC fellowship at Jefferson Lab
The longitudinal and transverse emittance growth in hadron beams due to intra-beam scattering (IBS) and other heating sources deteriorate the luminosity in a collider. Hence, a strong hadron beam cooling is required to reduce and preserve the emittance. The cooling of high energy hadron beam is challenging. We propose a dual energy storage ring-based electron cooler that uses an electron beam to extract heat away from hadron beam in the cooler ring while the electron beam is cooled by synchrotron radiation damping in the high energy damping ring. In this paper, we present a design of a dual energy storage ring-based electron cooler. Finally, the cooling performance is simulated using Jefferson Lab Simulation Package for Electron Cooling (JSPEC) for proton beams at the top energy of 275 GeV for Electron-Ion Collider.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK047  
About • Received ※ 06 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOYGD2
Results of the Coherent Electron Cooling Experiment at RHIC  
 
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • Z. Altinbas, S.J. Brooks, J.C. Brutus, Z.A. Conway, L. Cultrera, A.J. Curcio, L. DeSanto, A. Di Lieto, K.A. Drees, W. Fischer, M. Gaowei, X. Gu, M. Harvey, T. Hayes, H. Huang, M. Ilardo, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, R. Karl, D. Kayran, J. Kewisch, J. Ma, G.J. Mahler, G.J. Marr, A. Marusic, R.J. Michnoff, M.G. Minty, G. Narayan, L.K. Nguyen, M.C. Paniccia, I. Pinayev, T. Rao, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, M.P. Sangroula, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, J. Skaritka, L. Smart, A. Sukhanov, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, B.P. Xiao, A. Zaltsman
    BNL, Upton, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron Cooling (CeC) experiment aims on demonstrating cooling during this RHIC run, which will be concluded in April 2022. In this talk we will present results of the CeC experiment with special focus won the use and the control of the broad-band micro-bunching Plasma Cascade Amplifier with bandwidth of 15 THz. We will also discuss connection of this experiment with the developing the CeC cooler for future Electron Ion Collider.
 
slides icon Slides WEOYGD2 [18.592 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOXGD2 Electron Cooling Experiment for Proton Beams with Intense Space-Charge in IOTA 2395
 
  • N. Banerjee, J.A. Brandt
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • M.K. Bossard, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • B.L. Cathey, S. Nagaitsev, G. Stancari
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi Research Alliance, LLC under Contract No.~DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics and also the University of Chicago.
Electron cooling as a method of creating intense ion beams has a practical upper limit when it comes to the peak phase space density of ion beams which can be achieved in practice. We describe a new experiment to study electron cooling of 2.5 MeV protons at the intensity limit using the Integrable Optics Test Accelerator (IOTA), which is a storage ring dedicated to beam physics research at Fermilab. This system will enable the study of magnetized electron cooling of a proton beam with transverse incoherent tune shifts approaching -0.5 due to the presence of intense space-charge forces. We present an overview of the hardware design, simulations and specific experiments planned for this project.
 
slides icon Slides THOXGD2 [2.775 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOXGD2  
About • Received ※ 13 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)