MC3: Novel Particle Sources and Acceleration Techniques
A21: Secondary Beams
Paper Title Page
WEPOST023 Design of a Very Low Energy Beamline for NA61/SHINE 1741
 
  • C.A. Mussolini, N. Charitonidis
    CERN, Meyrin, Switzerland
  • P. Burrows, C.A. Mussolini
    JAI, Oxford, United Kingdom
  • P. Burrows, C.A. Mussolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • Y. Nagai
    Colorado University at Boulder, Boulder, Colorado, USA
  • E.D. Zimmerman
    CIPS, Boulder, Colorado, USA
 
  A new, low-energy branch is being designed for the H2 beamline at the CERN North Experimental Area. This new low-energy branch would extend the capabilities of the current infrastructure enabling the study of particles in the low, 1 - 13 GeV/c, momentum range. The first experiment to profit from this new line will be NA61/SHINE (SPS Heavy Ion and Neutrino Experiment), a multi-purpose experiment studying hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the SPS. However, other future fixed target experiments or test-beam experiments installed in the downstream zones could also benefit from the low-energy particles provided. The proposed layout and expected performance of this line, along with estimates of particle rates, and considerations on the technical implementation of the beamline are presented in this contribution. A description on the instrumentation, which will enable particle-by-particle tagging, crucial for the experiments scope, is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST023  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST024 Physics Beyond Colliders: The Conventional Beams Working Group 1745
SUSPMF034   use link to see paper's listing under its alternate paper code  
 
  • C.A. Mussolini, D. Banerjee, A. Baratto Roldan, J. Bernhard, M. Brugger, N. Charitonidis, G.L. D’Alessandro, L. Gatignon, A. Gerbershagen, F. Metzger, R.P. Murphy, E.G. Parozzi, S.M. Schuh-Erhard, F.W. Stummer, M.W.U. Van Dijk
    CERN, Meyrin, Switzerland
  • F. Metzger
    HISKP, Bonn, Germany
  • R.P. Murphy, F.W. Stummer
    Royal Holloway, University of London, Surrey, United Kingdom
  • C.A. Mussolini, F.W. Stummer
    JAI, Oxford, United Kingdom
  • C.A. Mussolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • E.G. Parozzi
    Universita Milano Bicocca, MILANO, Italy
  • E.G. Parozzi
    INFN MIB, MILANO, Italy
 
  The Physics Beyond Colliders initiative aims to exploit the full scientific potential of the CERN accelerator complex and its scientific infrastructure for particle physics studies, complementary to current and future collider experiments. Several experiments have been proposed to fully utilize and further advance the beam options for the existing fixed target experiments present in the North and East Experimental Areas of the CERN SPS and PS accelerators. We report on progress with the RF-separated beam option for the AMBER experiment, following a recent workshop on this topic. In addition we cover the status of studies for ion beams for the NA60+ experiment, as well as of those for high intensity beams for Kaon physics and feebly interacting particle searches. With first beams available in 2021 after a CERN-wide long shutdown, several muon beam options were already tested for the NA64mu, MUonE and AMBER experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST024  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST040 Comparing Methods of Recovering Gamma Energy Distributions from PEDRO Spectrometer Responses 1784
 
  • M.H. Oruganti, B. Naranjo, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
 
  To calculate the energy levels of the photons emitted from high-energy particle interactions, the new pair spectrometer (PEDRO) channels the photons through several Beryllium nuclear fields to produce electron-positron pairs through the nuclear field interaction. This project compared several methods of reconstruction and determined which best predicts original energy distributions based on simulated spectra. These methods included using Maximum Likelihood Estimation, Machine Learning, and directly analyzing a response matrix that modeled PEDRO’s response to any photon energy distribution. We report that performing the direct analysis, also known as QR decomposition, on a PEDRO-generated spectrum provides by far the most accurate calculation of the spectrum’s original energy distribution. These methods were tested against results from experimental cases, including Nonlinear Compton Scattering and Filamentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST040  
About • Received ※ 15 June 2022 — Revised ※ 01 July 2022 — Accepted ※ 08 July 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)