MC2: Photon Sources and Electron Accelerators
T02: Electron Sources
Paper Title Page
THPOST046 CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG) 2544
SUSPMF021   use link to see paper's listing under its alternate paper code  
 
  • G.E. Lawler, A. Fukasawa, N. Majernik, J.R. Parsons, J.B. Rosenzweig, Y. Sakai, A. Suraj
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE Contract DE-SC0020409
Pro­duc­ing higher bright­ness beams at the cath­ode is one of the main fo­cuses for fu­ture elec­tron beam ap­pli­ca­tions. For pho­to­cath­odes op­er­at­ing close to their emis­sion thresh­old, the cath­ode lat­tice tem­per­a­ture be­gins to dom­i­nate the min­i­mum achiev­able in­trin­sic emit­tance. At UCLA, we are de­sign­ing a ra­diofre­quency (RF) test bed for mea­sur­ing the tem­per­a­ture de­pen­dence of the mean trans­verse en­ergy (MTE) and quan­tum ef­fi­ciency for a num­ber of can­di­date cath­ode ma­te­ri­als. We in­tend to quan­tify the at­tain­able bright­ness im­prove­ments at the cath­ode from cryo­genic op­er­a­tion and es­tab­lish a proof-of-prin­ci­ple cryo­genic RF gun for fu­ture stud­ies of a 1.6-cell cryo­genic pho­toin­jec­tor for the UCLA ultra com­pact XFEL con­cept (UC-XFEL). The test bed will use a C-band 0.5-cell RF gun de­signed to op­er­ate down to 45 K, pro­duc­ing an on-axis ac­cel­er­at­ing field of 120 MV/m. The cryo­genic sys­tem uses con­duc­tion cool­ing and a load-lock sys­tem is being de­signed for trans­port and stor­age of air-sen­si­tive high bright­ness cath­odes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST046  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT005 Field Enhanced, Compact S-Band Gun Employing a Pin Cathode 2567
SUSPMF020   use link to see paper's listing under its alternate paper code  
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, K. Flöttmann, F.X. Kaernter
    DESY, Hamburg, Germany
  • N.H. Matlis
    CFEL, Hamburg, Germany
 
  S-band RF-guns are highly de­vel­oped for pro­duc­tion of low emit­tance rel­a­tivis­tic elec­tron bunches, but need pow­er­ful kly­strons for dri­ving. Here, we pre­sent the de­sign and first ex­per­i­men­tal tests of a com­pact S-band gun, which can ac­cel­er­ate elec­trons up to 180 keV pow­ered by only 10 kW from a com­pact rack-mount­able solid-state am­pli­fier. A pin-cath­ode is used to en­hance the RF elec­tric field on the cath­ode up to 100 MV/m as in large-scale S-band guns. An elec­tron bunch is gen­er­ated through pho­toe­mis­sion off a flat cop­per sur­face on the pin ex­cited by a UV laser pulse fol­lowed by a fo­cus­ing so­le­noid pro­duc­ing a low emit­tance bunch with 0.1 mm mrad trans­verse emit­tance for up to 100 fC bunch charge. We are cur­rently in the con­di­tion­ing phase of the gun and first ex­per­i­ments show good agree­ment with sim­u­la­tions. The com­pact gun will serve three pur­poses: (i) it can be used di­rectly for ul­tra­fast elec­tron dif­frac­tion; (ii) as an in­jec­tor into a THz booster pro­duc­ing 0.3MeV to 2 MeV elec­tron bunches for ul­tra­fast elec­tron dif­frac­tion; (iii) The sys­tem in (ii) serves as an in­jec­tor into a THz lin­ear ac­cel­er­a­tor pro­duc­ing a 20 MeV beam for the AXSIS X-ray source pro­ject.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT005  
About • Received ※ 21 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT019 Multi-Alkali Antimonide Photocathode Development for High Brightness Beams 2610
 
  • S. Mistry, T. Kamps, J. Kühn, C. Wang
    HZB, Berlin, Germany
  • T. Kamps
    HU Berlin, Berlin, Germany
  • C. Wang
    University Siegen, Siegen, Germany
 
  Funding: This work is funded by the DFG CO 1509/10-1 | MI 2917/1-1
Pho­to­cath­ode R&D at the Helmholtz-Zen­trum Berlin (HZB) is dri­ven by the mo­ti­va­tion to pro­duce high bright­ness elec­tron beams for the SRF pho­toin­jec­tor test fa­cil­ity, Sealab/ bERLinPro. Multi-al­kali an­ti­monides are the choice pho­to­cath­ode ma­te­r­ial due to high quan­tum ef­fi­ciency (QE) and low in­trin­sic emit­tance in the vis­i­ble range. In this work a more ro­bust al­ter­na­tive to the tried and tested Cs-K-Sb is con­sid­ered. Na-K-Sb of­fers sim­i­lar ad­van­tages to Cs-K-Sb in­clud­ing, high QE at green wave­lengths but more­over, it of­fers ex­cel­lent sta­bil­ity at el­e­vated tem­per­a­tures. This prop­erty could lengthen the cath­ode life­time by en­hanc­ing the ro­bust­ness of the pho­to­cath­ode in­side the SRF gun. In this work, a sta­tus re­port show­cas­ing first re­sults to­wards the de­vel­op­ment of a growth pro­ce­dure for Na-K-Sb is pre­sented by means of spec­tral re­sponse and XPS mea­sure­ments con­ducted in the HZB pho­to­cath­ode lab.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT019  
About • Received ※ 03 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT020 Status and Plans for the New CLS Electron Source Lab 2614
 
  • M.J. Boland, D. Bertwistle, F. Le Pimpec
    CLS, Saskatoon, Saskatchewan, Canada
  • X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
 
  The Cana­dian Light Source (CLS) has re­cently cre­ated a new Elec­tron Source Lab (ESL) that can run in­de­pen­dently from user op­er­a­tions. A sec­tion of the old Saskatchewan Ac­cel­er­a­tor Lab­o­ra­tory ex­per­i­men­tal nu­clear physics tun­nels has been re­built with new shield­ing and a sep­a­rate en­trance. The lab­o­ra­tory will be used to pre­pare an op­er­a­tional spare elec­tron gun for the 250 MeV linac. In ad­di­tion, there are plans to de­velop RF guns for a fu­ture branch line to in­ject into the linac and for pos­si­ble short pulse pro­duc­tion. This paper will give an overview of the ESL space and the first elec­tron guns which plan to be in­stalled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT020  
About • Received ※ 16 June 2022 — Revised ※ 29 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT022 Study on QE Evolution of Cs2Te Photocathodes in ELBE SRF Gun-II 2617
 
  • R. Xiang, A. Arnold, S. Ma, P. Michel, P. Murcek, A.A. Ryzhov, J. Schaber, J. Teichert, P.Z. Zwartek
    HZDR, Dresden, Germany
 
  The qual­ity of the pho­to­cath­odes is crit­i­cal for the sta-bil­ity and re­li­a­bil­ity of the pho­toin­jec­tor’s op­er­a­tion. Thanks to the ro­bust mag­ne­sium and Cs2Te pho­to­cath­odes, SRF gun-II at HZDR has been proven to be a suc-cess­ful ex­am­ple in CW mode for high cur­rent user op­er­a­tion. In this con­tri­bu­tion, we will pre­sent our ob­ser­va­tion of the QE evo­lu­tion of Cs2Te pho­to­cath­odes dur­ing SRF gun op­er­a­tion. The vari­ables in­clud­ing sub­strate sur­face, film thick­ness, Cs/Te sto­i­chio­met­ric, mul­ti­pact­ing, RF load­ing and charge ex­tract are con­sid­ered in the analy­sis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT022  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT024 MIST - The MESA-Injector Source Two 2624
 
  • M.A. Dehn, P.S. Plattner
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    KPH, Mainz, Germany
 
  Funding: Work supported by the German science ministry BMBF through Verbundforschung
The new ac­cel­er­a­tor MESA (Mainz En­ergy Re­cov­er­ing Su­per­con­duct­ing Ac­cel­er­a­tor) will pro­vide an av­er­age CW elec­tron beam cur­rent of up to 10 mA. Op­er­at­ing at 1.3 GHz, this cor­re­sponds to a bunch charge of 7.7 pC. The new DC pho­toe­mis­sion source MIST is op­ti­mized for these re­quire­ments. A chal­lenge is heat­ing of the pho­to­cath­ode at high laser power. By a suit­able me­chan­i­cal con­struc­tion and the use of spe­cific ma­te­ri­als, the heat can be dis­si­pated dur­ing op­er­a­tion. Op­tions for fur­ther im­prove­ments are dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT025 Photocathode Stress Test Bench at INFN LASA 2627
 
  • D. Sertore, D. Giove, L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • A. Bacci, F. Canella, S. Cialdi, I. Drebot, D. Giannotti, L. Serafini
    INFN-Milano, Milano, Italy
  • D. Cipriani, E. Suerra
    Università degli Studi di Milano, Milano, Italy
  • G. Galzerano
    POLIMI, Milano, Italy
  • G. Guerini Rocco
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  A UHV test bench based on a 100 kV DC gun and a 100 MHz rep­e­ti­tion rate laser has been setup up at INFN LASA to test Cs2Te pho­to­cath­odes. This op­er­a­tion mode is the base­line of the BriXSinO pro­ject, cur­rently in the de­sign phase in our lab­o­ra­tory, and the qual­i­fi­ca­tion of the Cs2Te pho­to­cath­odes is a key issue. In this paper, we pre­sent the re­cent ad­vances in the dif­fer­ent as­pects of this R&D ac­tiv­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT025  
About • Received ※ 10 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT026 Assembly and Characterization of Low-Energy Electron Transverse Momentum Measurement Device (TRAMM) at INFN LASA 2630
 
  • D. Sertore, M. Bertucci, A. Bosotti, D. Giove, L. Monaco, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • G. Guerini Rocco, C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  In the frame­work of high-bright­ness elec­tron beam gen­er­a­tion, ther­mal emit­tance is nowa­days a key pa­ra­me­ter. While al­kali tel­lurides are ex­ten­sively used in ad­vanced elec­tron sources, al­kali an­ti­monides pho­to­cath­odes demon­strated high QE in the vis­i­ble, thus mak­ing fea­si­ble CW op­er­a­tions for RF-based pho­toin­jec­tors. The INFN LASA lab­o­ra­tory in Milan is fully equipped with ded­i­cated pro­duc­tion sys­tems for pho­to­cath­ode prepa­ra­tion and op­ti­cal setup for QE eval­u­a­tion. In this paper, we de­scribe a newly de­signed de­vice ded­i­cated to elec­tron trans­verse mo­men­tum mea­sure­ment (TRAMM). It will be con­nected to the main pro­duc­tion cham­bers and will serve as an "emit­tance mon­i­tor­ing" sys­tem dur­ing pho­to­cath­ode growth. From the de­sign phase, through the pa­ra­me­ter es­ti­mate, as­sem­bly of the com­po­nents, to the in­stal­la­tion and first mea­sure­ments, we de­scribe the sta­tus of this pro­ject and its fu­ture de­vel­op­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT026  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT027 R&D on High QE Photocathodes at INFN LASA 2633
 
  • D. Sertore, M. Bertucci, L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • G. Guerini Rocco
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S.K. Mohanty, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  We pre­sent the re­cent ac­tiv­i­ties on an­ti­monide and tel­luride al­kali based pho­to­cath­odes at INFN LASA. The R&D on Cs2Te ma­te­ri­als is fo­cused on in­ves­ti­gat­ing ef­fects of ma­te­r­ial thick­ness and growth pro­ce­dures on the pho­to­cath­odes per­for­mances dur­ing op­er­a­tion in RF guns. We aim to im­prove ther­mal emit­tance and long term sta­bil­ity of these films. The more re­cent work on al­kali an­ti­monide showed the need for sub­stan­tial im­prove­ments in sta­bil­ity and QE dur­ing op­er­a­tion. We pre­sent here our re­cent achieve­ments and plans for fu­ture ac­tiv­i­ties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT027  
About • Received ※ 09 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT028 Dependence of CsK2Sb Photocathode Performance on the Quality of Graphene Substrate Film 2637
 
  • L. Guo, K. Goto, Y. Takashima
    Nagoya University, Nagoya, Japan
  • H. Yamaguchi
    LANL, Los Alamos, New Mexico, USA
  • M. Yamamoto
    KEK, Ibaraki, Japan
 
  Funding: U.S.-Japan Science and Technology Cooperation Program in High Energy Physics
A pho­to­cath­ode that ex­tracts elec­trons by ir­ra­di­at­ing a semi­con­duc­tor or metal with a laser is ap­plied to ad­vanced ac­cel­er­a­tors and elec­tron mi­cro­scopes as a high-per­for­mance cath­ode. In par­tic­u­lar, the CsK2Sb pho­to­cath­ode is of in­ter­est be­cause it has fea­tures such as low emit­tance, ex­citabil­ity with vis­i­ble light, and high quan­tum ef­fi­ciency. Gen­er­ally, the CsK2Sb pho­to­cath­ode is pro­duced by de­posit­ing a cath­ode el­e­ment on a sub­strate, so that the cath­ode per­for­mance strongly de­pends on the sur­face con­di­tion of the sub­strate. We have found graphene as reusable sub­strate, which has the prop­erty of being chem­i­cally in­ac­tive. In this study, graphene film qual­ity de­pen­dence of CsK2Sb photo-cath­ode per­for­mance was eval­u­ated. Specif­i­cally, CsK2Sb cath­ode was de­posited using dif­fer­ent qual­ity graphene film sub­strates and their QE val­ues and uni­for­mity were com­pared. The qual­ity of graphene films was an­a­lyzed using X-ray Pho­to­elec­tron Spec­troscopy (XPS) and X-ray ab­sorp­tion spec­troscopy (XAS). We found that the graphene film can be cleaned by heat­ing at 500 deg. The QE of the cath­ode on a good qual­ity graphene film was higher and more uni­form than that on a poor qual­ity graphene film.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT028  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT029 Study on the Performance Improvement of Alkali Antimonide Photocathodes for Radio Frequency Electron Guns 2640
 
  • R. Fukuoka, K. Ezawa, Y. Koshiba, M. Washio
    Waseda University, Tokyo, Japan
  • K. Sakaue
    The University of Tokyo, Graduate School of Engineering, Bunkyo, Japan
 
  Semi­con­duc­tor pho­to­cath­odes such as Cs-Te and Cs-K-Sb are used as elec­tron sources in ac­cel­er­a­tors to gen­er­ate high bright­ness beams using radio fre­quency (rf) elec­tron guns. Al­kali an­ti­monide pho­to­cath­odes have a high quan­tum ef­fi­ciency (Q.E.) of ~10%, and their ex­ci­ta­tion wave­length is in the vis­i­ble light re­gion (532 nm), so that they are ex­pected to re­duce the re­quire­ments on the op­ti­cal sys­tem and in­crease the amount of charge com­pared to Cs-Te. How­ever, al­kali an­ti­monide pho­to­cath­odes have a short life­time and de­grade under poor vac­uum con­di­tions, so it is es­sen­tial to im­prove dura­bil­ity by pro­tec­tive film coat­ings. There­fore, we are cur­rently work­ing on the fab­ri­ca­tion of high Q.E. al­kali an­ti­monide pho­to­cath­odes that can with­stand the Q.E. re­duc­tion dur­ing coat­ing. In this pre­sen­ta­tion, we will re­port the re­sults of com­par­i­son be­tween the fab­ri­cated al­kali an­ti­monide pho­to­cath­ode and Cs-Te pho­to­cath­ode, and fu­ture prospects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT029  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT030 Design Study of 30 MeV Linac for a Compact THz Radiation Source 2643
 
  • S. Jummunt, S. Chunjarean, N. Juntong, S. Klinkhieo
    SLRI, Nakhon Ratchasima, Thailand
  • K. Manasatitpong
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
 
  Funding: This work is supported by Science, Research, and Innovation Fund (SRI Fund)
A com­pact THz ra­di­a­tion source plays a pos­si­bil­ity to achieve in­tense THz ra­di­a­tion at tun­able fre­quen­cies be­tween 0.5 and 5.0 THz, with a peak power of sev­eral MW and nar­row-band­width. This source re­quires es­sen­tially the re­li­able high gra­di­ent s-band lin­ear ac­cel­er­a­tor (linac) to pro­vide an elec­tron beam en­ergy up to 30 MeV with high bunch charge. In order to ob­tain a high gra­di­ent linac men­tioned, the cav­ity struc­ture has been op­ti­mized and per­formed using the soft­ware CST. The pre­lim­i­nary de­sign of linac and beam dy­nam­ics study are pre­sented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT030  
About • Received ※ 14 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT033 Performance Characterisation at Daresbury Laboratory of Cs-Te Photocathodes Grown at CERN 2653
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Benjamin, H.M. Churn, L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin
    University of Warwick, Coventry, United Kingdom
  • E. Chevallay, V.N. Fedosseev, E. Granados, M. Himmerlich, H. Panuganti
    CERN, Meyrin, Switzerland
  • L.B. Jones, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high-per­for­mance pho­to­cath­odes is a pri­or­ity in the field of par­ti­cle ac­cel­er­a­tors. The sur­face char­ac­ter­is­tics of a pho­to­cath­ode af­fect many im­por­tant fac­tors of the pho­toe­mis­sion process in­clud­ing the pho­toe­mis­sion thresh­old, the in­trin­sic emit­tance and the quan­tum ef­fi­ciency. These fac­tors in turn de­fine the elec­tron beam qual­ity, which is mea­sur­able using fig­ures of merit like beam emit­tance, bright­ness and en­ergy spread. We pre­sent char­ac­ter­i­sa­tion mea­sure­ments for four cae­sium tel­luride pho­to­cath­odes syn­the­sized at CERN. The pho­to­cath­odes were trans­ported under ul­tra-high vac­uum (UHV) and analysed at STFC Dares­bury Lab­o­ra­tory, using ASTeC’s Mul­ti­probe (SAPI)* for sur­face char­ac­ter­i­sa­tion via XPS and STM, and for Mean Trans­verse En­ergy (MTE) mea­sure­ments using the Trans­verse En­ergy Spread Spec­trom­e­ter (TESS)**. The MTE mea­sure­ments were es­ti­mated at cryo­genic and room tem­per­a­tures based on the re­spec­tive trans­verse en­ergy dis­tri­b­u­tion curves. We dis­cuss cor­re­la­tions found be­tween the syn­the­sis pa­ra­me­ters, and the mea­sured sur­face char­ac­ter­is­tics and MTE val­ues.
*B.L. Militsyn, 4-th EuCARD2 WP12.5 meeting, Warsaw, 14-15 March 2017
**L.B. Jones et al., Proc. FEL ’13, TUPPS033, 290-293; https://accelconf.web.cern.ch/FEL2013/papers/tupso33.pdf
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT033  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT034 Controlled Degradation of a Ag Photocathode by Exposure to Multiple Gases 2657
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • L.B. Jones, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high per­for­mance pho­to­cath­ode elec­tron sources is a pri­or­ity in the ac­cel­er­a­tor sci­ence com­mu­nity. The sur­face char­ac­ter­is­tics of a pho­to­cath­ode de­fine many im­por­tant fac­tors of the pho­toe­mis­sion process in­clud­ing the work func­tion, the in­trin­sic emit­tance and the quan­tum ef­fi­ciency of the pho­to­cath­ode. These fac­tors in turn de­fine the ul­ti­mate elec­tron beam qual­ity, which is mea­sur­able as nor­malised emit­tance, bright­ness and en­ergy spread. Strate­gies for im­prov­ing these pa­ra­me­ters vary, but un­der­stand­ing and in­flu­enc­ing the rel­e­vant cath­ode sur­face physics which un­der­pin these at­trib­utes is a pri­mary focus for the com­mu­nity*. We pre­sent per­for­mance data under il­lu­mi­na­tion at 266 nm for Ag (100) sin­gle-crys­tal cath­ode and a Ag poly­crys­talline cath­ode after pro­gres­sive ex­po­sure to O2, CO2, CO and N2 using our TESS** in­stru­ment both at room and cryo­genic tem­per­a­tures. Cru­cially the data shows the ef­fect of pro­gres­sive degra­da­tion*** in the pho­to­cath­ode per­for­mance as a con­se­quence of ex­po­sure to con­trolled lev­els of O2 and that ex­pos­ing an ox­i­dized Ag sur­face to CO can drive par­tial QE re­cov­ery.
*K.L. Jensen; Appl. Phys. Lett. 89, 224103 (2006);
**L.B. Jones et al.; Proc. FEL ’13, TUPPS033, 290-293;
***N. Chanlek et al.; J. Phys. D: Appl. Phys. (2014) 47, 055110;
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT034  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT036 New Microwave Thermionic Electron Gun for APS Upgrade: Test Results and Operation Experience 2665
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinez, R.D. Berry, O. Chimalpopoca, A.Y. Murokh, M. Ruelas, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • J.E. Hoyt, W.G. Jansma, A. Nassiri, Y. Sun, G.J. Waldschmidt
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under contracts DE-SC0015191 and DE- AC02-06CH11357
Re­cently, Ra­di­a­Beam has de­signed and built a ro­bust thermionic RF gun with op­ti­mized elec­tro­mag­netic per-for­mance, im­proved ther­mal en­gi­neer­ing, and a ro­bust cath­ode mount­ing tech­nique. This gun al­lows to im­prove the per­for­mance of ex­ist­ing and fu­ture light sources, in­dus­trial ac­cel­er­a­tors, and elec­tron beam dri­ven te-ra­hertz sources. Un­like con­ven­tional elec­tri­cally or side-cou­pled RF guns, this new gun op­er­ates in ’-mode with the help of mag­netic cou­pling holes. Such a de­sign al-lows op­er­a­tion at longer pulses and has neg­li­gi­ble di­pole and quadru­pole com­po­nents. The gun pro­to­type was built, then in­stalled and tested at the Ad­vanced Pho­ton Source (APS) in­jec­tor. This paper pre­sents the re­sults of high power and beam tests of this RF gun, and op­er­a­tion-al ex­pe­ri­ence at APS to this mo­ment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT036  
About • Received ※ 31 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT044 The Alkali-Metal Photocathode Preparation Facility at Daresbury Laboratory: First Caesium Telluride Deposition Results 2693
 
  • H.M. Churn, C. Benjamin, L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin
    University of Warwick, Coventry, United Kingdom
  • H.M. Churn, L.B. Jones, T.C.Q. Noakes
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Fourth gen­er­a­tion light sources re­quire high bright­ness elec­tron beams. To achieve this a pho­to­cath­ode with a high quan­tum ef­fi­ciency and low in­trin­sic emit­tance is re­quired, which is also ro­bust with a long op­er­a­tional life­time and low dark cur­rent. Al­kali-metal pho­to­cath­odes have the po­ten­tial to ful­fil these re­quire­ments, so are an im­por­tant re­search area for the ac­cel­er­a­tor physics com­mu­nity. STFC Dares­bury Lab­o­ra­tory are cur­rently com­mis­sion­ing the Al­kali-metal Pho­to­cath­ode Prepa­ra­tion Fa­cil­ity (APPF) which will be used to grow al­kali pho­to­cath­odes. Pho­to­cath­odes pro­duced by the APPF will be analysed using Dares­bury Lab­o­ra­tory’s ex­ist­ing Mul­ti­probe sys­tem* and the Trans­verse En­ergy Spread Spec­trom­e­ter (TESS)**. Mul­ti­probe can per­form a va­ri­ety of sur­face analy­sis tech­niques while the TESS can mea­sure the Mean Trans­verse En­ergy of a pho­to­cath­ode from its Trans­verse En­ergy Dis­tri­b­u­tion Curve over a large range of il­lu­mi­na­tion wave­lengths. We pre­sent an overview on our cur­rent progress in the com­mis­sion­ing and test­ing of the APPF, the re­sults from the first Cs-Te de­po­si­tion and de­tail the work planned to fa­cil­i­tate the man­u­fac­ture of Cs2Te pho­to­cath­odes for the CLARA ac­cel­er­a­tor***.
*B.L. Militsyn, 4th EuCARD2 WP12.5 meeting, Warsaw, 14-15 Mar. 2017
**L. Jones et al., Proc. FEL ’13, TUPPS033, 290-293
***D. Angal-Kalinin et al., Phys. Rev. Accel. Beams, Vol. 23, Iss. 4, 2020
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT044  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK014 100 keV Electron Source Design for the New 3 GeV Synchrotron Facility in Thailand 2800
 
  • N. Juntong, S. Bootiew, T. Chanwattana, Ch. Dhammatong, S. Jummunt, K. Kittimanapun, W. Phacheerak
    SLRI, Nakhon Ratchasima, Thailand
  • K. Manasatitpong
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
 
  The Syn­chro­tron Light Re­search In­sti­tute (SLRI) is de­vel­op­ing a new syn­chro­tron light source with an elec­tron beam en­ergy of 3 GeV. The DC thermionic elec­tron gun was cho­sen be­cause it is sim­ple and less cost. The de­sign process is well known. The op­er­a­tion is more sta­ble com­pared to the RF gun. The cath­ode Y-646B was con­sid­ered be­cause it had al­ready been used at the old syn­chro­tron ma­chine and the pos­si­bil­ity of shar­ing the stock out­weighs other dis­ad­van­tages. More­over, it is used in many syn­chro­tron fa­cil­i­ties, so it is easy to find ref­er­ences. The pre­sent of the fo­cus­ing elec­trode was dis­cussed. The fo­cus­ing elec­trode will in­crease the com­plex­ity of the gun, but it is nec­es­sary to get a high-qual­ity beam from the gun. The de­signed elec­tron gun can pro­duce 1.1 A beams cur­rent with the nor­mal­ized emit­tance of 0.910 Pi·mm·mrad, which sat­is­fied the re­quire­ment of the linac in­jec­tor. The de­sign and study re­sults will be dis­cussed in this re­port.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK014  
About • Received ※ 20 May 2022 — Accepted ※ 14 June 2022 — Issue date ※ 29 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)