Paper | Title | Page |
---|---|---|
MOOPLGD2 | SPS-II: A 4th Generation Synchrotron Light Source in Southeast Asia | 764 |
|
||
Upon its completion, Siam Photon Source II (SPS-II) will be the first 4th generation synchrotron light source in Southeast Asia. The 3.0 GeV, 327.5 m storage ring based on the Double-Triple Bend Achromat lattice will have the natural emittance of 0.97 nm·rad. The storage ring includes 14 long and 14 short straight sections for insertion devices and machine subsys-tems. The beam injection will be performed by a 150 MeV linear accelerator and a full-energy concentric booster synchrotron sharing the same tunnel with the storage ring. In the first phase, there will be 7 insertion devices and 7 associated beamlines with the end sta-tions for different techniques utilizing synchrotron radiation from 80 eV to 60 keV. High-energy and high-brightness radiation generated by the new light source will serve as one of the most powerful analytical tools in the region for advanced science and technology research. | ||
Slides MOOPLGD2 [4.168 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOPLGD2 | |
About • | Received ※ 12 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOST032 | SLS 2.0, the Upgrade of the Swiss Light Source | 925 |
|
||
The Swiss Light Source (SLS) will be upgraded by replacing the storage ring in the existing hall in 2023–24. The SLS lattice build from 12~triple-bend arcs operating at 2.4 GeV is replaced by a 12x7-BA lattice operating at 2.7 GeV to increase hard X-ray brightness by a factor 60. The layout is constrained by the existing tunnel to 288 m circumference, nevertheless a low emittance of 158 pm is realized using longitudinal gradient and reverse bends. Dynamic aperture is sufficient to start with classical injection based on a 4-kicker bump. An upgrade path for on-axis injection with fast kickers has been implemented. Small beam pipes of 18 mm inner diameter and corresponding reduction of magnet bores, and the use of permanent magnets for all bending magnets enables a densely packed lattice and contributes most to a reduction of total power consumption of the facility by 30%.
On behalf of the SLS 2.0 Team. Technical Design Report: https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A39635 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST032 | |
About • | Received ※ 16 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOPT024 | Recent Developments at SOLARIS National Synchrotron Radiation Centre | 1051 |
|
||
SOLARIS National Synchrotron Radiation Centre is under constant development of the research infrastructure. In 2018 first users were welcomed at three different experimental stations. Up to now 5 end stations are available at SOLARIS for experiments at 4 beamlines, and 4 new beamlines are under construction. In 2021 new front end for POLYX beamline was installed and de-gassed. Moreover, ASTRA beamline components were installed and first commissioning stage has stared. Additionally, a plasma cleaning station has been designed, built and is currently tested. Apart of the beamlines, up-grades to the linac and storage ring operation have been done. During the COVID-19 pandemic the software for remote injection process was developed and is used on daily basis. The transverse beam emittance measurement on the visible light beamline LUMOS was implemented and gives results that are complementary to the Pinhole beamline. Within this presentation the overview of the recent developments with insight to the details to be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT024 | |
About • | Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS001 | Conceptual Design of a Future Australian Light Source | 1381 |
|
||
ANSTO currently operates the Australian Synchrotron, a 3 GeV, 3rd generation light source that begun user operations in 2007. The Australian synchrotron is now halfway through its expected life span and we have begun planning the next light source facility that will eventually replace it. This paper describes the conceptual design of an entirely new light source facility for Australia, which makes use of the latest advances in compact acceleration technology and 4th generation lattices. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS001 | |
About • | Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS002 | Status of Sirius Operation | 1385 |
|
||
SIRIUS is a Synchrotron Light Source Facility based on a 3 GeV electron storage ring with 518 m circumfer-ence and 250 pm.rad emittance. The facility was built and is operated by the Brazilian Synchrotron Light Laboratory (LNLS), located in the CNPEM campus, in Campinas, Brazil. The accelerator commissioning and operation has been split into 2 phases: Phase0, corresponding to the initial accelerator commissioning with 6 beamlines, has been completed, and the project is now in preparation for Phase1, with full accelerator design performance and 14 beamlines in operation. We report on the status of SIRI-US last year operation and ongoing activities towards achieving completion of Phase1. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS002 | |
About • | Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS003 | CLS Operational Status and Future Operational Plans | 1389 |
|
||
The Canadian Light Source (CLS) has been in operation for users since 2005 and recently commissioned the 22nd photon beamline. In 2021 the CLS commenced top-up operations at 220 mA, which has been a big success for the user experiments. The storage ring is now RF power limited and will require a second RF cavity to realise the design goal of 500 mA. The 250 MeV electron injector complex for the CLS booster synchrotron ring dates back to the original linac from 1962 and the Saskatchewan Accelerator Laboratory. This paper will give an overview of the present status of the accelerator systems for user operations and the operational improvement plans for a second RF cavity in the storage ring and a new linac. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS003 | |
About • | Received ※ 16 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS004 | TDR Baseline Lattice for the Upgrade of SOLEIL | 1393 |
|
||
Previous CDR studies for the SOLEIL Upgrade project have converged towards a lattice alternating 7BA and 4BA HOA type cells providing a low natural horizontal emittance value in the 80 pm.rad range at an energy of 2.75 GeV. This lattice adapts to the current tunnel geometry as well as to preserve as much as possible the present beamline positions. The TDR lattice is an evolution of the CDR one including longer short straight sections, better relative magnet positioning, and the replacement quadrupole triplets by quadruplets for improving flexibility of optics matching in straight section. The SOLEIL upgrade TDR lattice is then composed of 20 HOA cells with a two-fold symmetry, and provides 20 straight sections having four different lengths of 3.0, 4.2, 8.0, and 8.2 m. This paper reports the linear and the non-linear beam dynamic optimization based on intense MOGA investigations, mainly to improve the energy acceptance required to keep a large enough Touschek beam lifetime. Some future directions for performance improvement are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS004 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 30 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS005 | SOLEIL Machine Status and Upgrade | 1397 |
|
||
SOLEIL is both a 2.75 GeV third generation synchrotron light source and a research laboratory at the forefront of experimental techniques dedicated to matter analysis down to the atomic scale, as well as a service platform open to all scientific and industrial communities. We present the performance of the accelerators delivering extremely stable photon beams to 29 beamlines. We report on the commissioning of a superbend magnet replacing a standard 1.71T dipole with a 2.84 T narrow peak permanent magnet-based dipole. It required local modification of the lattice to compensate linear and nonlinear optics distortions introduced by the new magnet field. The latest measurements made with a Multipole Injection Kicker are also reported. Work on the NEG test bench and its dedicated front-end for a 10 mm inner diameter vacuum pipe and other major R&D areas are also addressed in the frame of the SOLEIL upgrade. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS005 | |
About • | Received ※ 10 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 30 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS006 | FILO: A New Application to Correct Optics in the ESRF-EBS Storage Ring | 1401 |
|
||
A new optics correction application (Fit and Improvement of Linear Optics, FILO) was designed and set in place for the ESRF-EBS storage ring. The widely used software LOCO* is not available at ESRF and despite a few trials to set it in operation, it has been decided to write a new code. The application is flexible, may be used via the control system simulators and is adapted to a user friendly operation thanks to a wizard mode. Some features of LOCO are copied over, some others are yet to be implemented. The measurement of on and off-energy response matrices using slow or fast steerers is integrated in the same application. Results obtained with this application are presented together with an overview of the future developments.
*J Safranek, Experimental determination of storage ring optics using orbit response measurements, https://doi.org/10.1016/S0168-9002(97)00309-4 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS006 | |
About • | Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS007 | A Long Booster Option for the ESRF-EBS 6 GeV Storage Ring | 1405 |
|
||
Despite the several fruitful upgrades undergone, the present injector complex of the ESRF-EBS has a rather large horizontal natural emittance at extraction of >60nmrad. Several light sources (SLS, ALBA, SIRIUS) have adopted booster injectors fitting in the same tunnel as the main SR. The study of such an injector is shown in this paper for the ESRF-EBS. The proposed solution is based on a DBA lattice structure with 5 quadrupole families and 2 sextupole families. The possibility to install this long booster on the internal wall of the ESRF storage ring tunnel is assessed and the adequate distances are analyzed. The possibility to keep the existing injector is also considered in order to use this additional ring as an accumulator ring. Injection and extraction schemes are described. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS007 | |
About • | Received ※ 19 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 14 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS008 | Lifetime Correction Using Fast-Off-Energy Response Matrix Measurements | 1409 |
|
||
Following the measurements done at MAX-IV * we try to exploit for the ESRF-EBS Storage Ring (SR) off-energy response matrix measurement for the optimization of Touschek lifetime. The measurements performed with fast AC steerers on- and off-energy are analyzed and fitted producing an effective model including quadrupole and sextupole errors. Several alternatives to extrapolate sextupoles strengths for correction are compared in terms of lifetime. For the time being none of the corrections could produce better lifetime than the existing empirically optimized set of sextupoles.
*D.Olsson et al., Nonlinear optics from off-energy closed orbits, 10.1103/PhysRevAccelBeams.23.102803 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS008 | |
About • | Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS009 | First Year of Operation of the ESRF-EBS Ligth Source | 1413 |
|
||
The European Synchrotron Radiation Facility - Extremely Brilliant Source (ESRF-EBS) is a facility upgrade allowing its scientific users to take advantage of the first high-energy 4th generation light source. In December 2018, after 30 years of operation, the beam stopped for a 12-month shutdown to dismantle the old storage ring and to install the new X-ray source. On 25 August 2020, the user programme was restarted with beam parameters very close to nominal values. This paper reports on the present operation performance of the source, highlighting the ongoing and planned development. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS009 | |
About • | Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS010 | BESSY III Status Report and Lattice Design Process | 1417 |
|
||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association. Since 2020 a detailed discussion about a BESSY~II successor is ongoing at HZB and its user community in order to define the science and layout of the new facility. Still free locations close to BESSY~II have triggered a discussion about a greenfield project, but in-house upgrade solutions have also been investigated. As an additional boundary condition, BESSY~III has to meet the requirement of the Physikalische Technische Bundesanstalt (PTB) for radiation sources for metrology applications and bending magnet sources for tender X-rays. A Conceptional Design Report is in preparation. Here, we give a status report including a first parameter space, technical specifications and a first candidate for the linear lattice. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS010 | |
About • | Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS011 | Progress Towards EEHG Seeding at the DELTA Storage Ring | 1420 |
|
||
Funding: Funded by BMBF (05K16PEB, 05K19PEB), FZ Jülich, and by the federal state NRW. Seeding of free-electron lasers (FELs) with external laser pulses triggers the microbunching process such that the spectrotemporal properties of coherently emitted FEL radiation are under better control compared to self-amplified spontaneous emission. High-gain harmonic generation (HGHG) based on the interaction of electrons with a single laser pulse is routinely applied at a few FELs, and echo-enabled harmonic generation (EEHG) with a twofold laser-electron interaction has been demonstrated. Both schemes can be adopted in storage rings for the coherent emission of ultrashort radiation pulses. Coherent harmonic generation (CHG) is the counterpart to HGHG without FEL gain. It has been employed at several storage rings and presently provides ultrashort pulses in the vacuum ultraviolet regime at the 1.5-GeV electron storage ring DELTA operated by the TU Dortmund University. EEHG, which allows to reach higher harmonics of the seed wavelength, has not yet been implemented at any storage ring but is pursued at DELTA as an upgrade plan. The paper presents the layout of the envisaged EEHG facility, and it reviews simulation studies and the technical progress towards EEHG seeding at DELTA. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS011 | |
About • | Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 29 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS012 | Investigation of Spectro-Temporal Properties of CHG Radiation at DELTA | 1423 |
SUSPMF008 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Funded by DFG (INST 212/236-1 FUGG), BMBF (05K16PEA, 05K19PEB), and by the federal state NRW. At the synchrotron light source DELTA operated by the TU Dortmund University, the short-pulse facility employs the seeding scheme coherent harmonic generation (CHG) and provides ultrashort pulses in the vacuum ultraviolet and terahertz regime. Here, the interaction of laser pulses with the stored electron bunches results in a modulation of the longitudinal electron density which gives rise to coherent emission at harmonics of the laser wavelength. The spectral and temporal properties of such coherent short pulses can be manipulated by the seed laser properties and chicane strength. CHG spectra at several harmonics of the 800 nm seed laser were recorded using an image-intensified CCD (iCCD) camera and a newly installed XUV spectrometer. Numerical simulations to calculate the spectral phase properties of the seed laser from the observed spectra were carried out. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS012 | |
About • | Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS013 | Novel High Repetition Rate CW SRF Linac-Based Multispectral Photon Source | 1427 |
|
||
We discuss a design of a CW SRF linac-based photon facility for the generation of MIR-THz and VUV pulses at high repetition rates of up to 1 MHz. The MIR-THz sources would cover the frequency range from 0.1 to 30 THz with the pulse energies of a few 100 µJ. The use of the CW SRF linac and the radiation source architecture will allow for high flexibility in the pulse repetition rate. Conventional superradiant THz sources, driven by electron bunches shorter than the radiation wavelength, would cover the wavelength range from 0.1 THz to about 2.5 THz. A different approach is developed to extend the operation of the superradiant undulators well beyond the few THz. For this, a longitudinally modulated electron bunch would be used to achieve significant bunching factors at higher frequencies. The proposed VUV FEL would use the HGHG FEL scheme. It will allow the construction of a unique, fully coherent, high repetition rate source operated with about 30 µJ pulse energy at the first harmonic in the design wavelength range. An FEL oscillator, operating at a wavelength 3-5 times longer than the HGHG system, can generate the seed required for the high repetition rate HGHG scheme. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS013 | |
About • | Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS014 | PETRA IV Storage Ring Design | 1431 |
|
||
PETRA IV will be a diffraction-limited 6 GeV synchrotron light source with an emittance of 20 pm rad at DESY Hamburg. The TDR phase is nearing completion, and the lattice design is being finalised. The lattice will be based on the six-bend achromat cell with extensive use of damping wigglers. The key challenges of the lattice design are finding the balance between emittance minimisation and non-linear beam dynamics performance, and adapting the lattice to a collider-type tunnel geometry of the PETRA facility, with the long straight sections and low degree of superperiodicity. We present the lattice design and the beam physics aspects, focusing on the beam dynamics performance and optimisation, and the projected beam parameters taking collective effects and lattice imperfections into account. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS014 | |
About • | Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS015 | Proposal of a Girder Realignment Test in PETRA III | 1435 |
|
||
PETRA IV can benefit from the fine control of the girders that carry the storage ring elements to achieve the design beam performance. Based on the corrector magnet strength pattern it is desired to realign girders to stay within the alignment tolerances. In the current PETRA III configuration, the girders in the Max von Laue Hall are equipped for remote alignment, however, those have not been moved since their initial installation and the alignment system is currently not connected to the control system. In preparation for PETRA IV, a movement test of one of the PETRA III girders should confirm the ability to safely and precisely remote control the equipment based on an optics model that describes the effect of the girder movement on the orbit. This paper studies the feasibility of this test and prepares an initial mock-up experiment to be performed on a spare girder. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS015 | |
About • | Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS018 | Error Analysis and Commissioning Simulation for the PETRA-IV Storage Ring | 1442 |
|
||
The upgrade of the PETRA-III storage ring into a diffraction limited synchrotron radiation source is nearing the end of its detailed technical design phase. We present a preliminary commissioning simulation for PETRA-IV demonstrating that the final corrected machines meet the performance design goals. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS018 | |
About • | Received ※ 10 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS019 | Collimation Strategy for the Low-Emittance PETRA IV Storage Ring | 1445 |
|
||
The beam-intensity losses in the proposed PETRA IV electron storage ring that will replace DESY’s synchrotron light source PETRA III will be dominated by the Touschek effect due to the high bunch density. The beam lifetime will only be in the range of 5 h in the timing mode (80 high-intensity bunches) leading to a maximum power loss of ~170 mW along the storage ring (excluding injection losses). To avoid the demagnetization of the permanent-magnet undulators and combined-function magnets, this radiation-sensitive hardware has to be shielded against losses as well as possible. Such shielding elongates the lifetime of the hardware and consequently reduces the time and the resources that are spent on maintenance once PETRA IV is operational. This contribution presents options for collimator locations, e.g., at the dispersion bump in the achromat cell, to reduce the exposure to losses from the Touschek effect and the injection process. This contribution also quantifies the risk of damaging the installed collimation system in case of hardware failure, e.g., RF cavity or quadrupole failure, since the beam with an emittance of 20 pm could damage collimators if there is no emittance blow-up. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS019 | |
About • | Received ※ 08 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 28 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS020 | Long-Term Orbit Stability in the PETRA III Storage Ring | 1449 |
|
||
The study of long-term orbit stability in the PETRA III light source plays an important role for the design of its upgrade to PETRA IV. The PETRA III tunnel is made of individual segments that move against each other. Here, the long-term drifts of the tunnel ground that are mostly introduced by temperature variations, are of the highest concern for the PETRA IV alignment tolerances and orbit stability. This paper studies the evolution of the beam orbit and corrector magnet currents over several years and correlates tunnel movement to RMS orbit drifts. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS020 | |
About • | Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS021 | PETRA III Operational Performance and Availability | 1453 |
|
||
At DESY the Synchrotron Light Source PETRA III offers scientists outstanding opportunities for experiments with hard X-rays of exceptionally high brilliance since 2009. The light source is operated mainly in two operation modes with 480 and 40 bunches at a beam energy of 6 GeV. With the completion of the last milestone of the extension project in summer 2021 that brought the new dipole beamline P66 into operation, 2022 is the first year where almost 5000 hours of user run time could be scheduled. This paper will review the statistics of availability and failures over the years and provides a detailed description of the operation in 2021. Additionally, an outlook for the next runs is given. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS021 | |
About • | Received ※ 19 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS022 | Cooling Challenges in a NEG-Coated Vacuum Chamber of a Light Source | 1456 |
SUSPMF009 | use link to see paper's listing under its alternate paper code | |
|
||
In a light Source, unused synchrotron radiation is being distributed along the walls of the chambers. Due to the small conductance of the chambers, vacuum pumping is based on the distributed concept, and then non-evaporable getter (NEG) coating is extensively used. The vacuum chambers are made of copper alloys tube, and cooling circuits are welded to the chamber to remove the heat load from the radiation generated. Filler metal is used to create a brazed joint between the water cooling pipe and the vacuum chamber body. The thermal conductivity of the fillers is less than the vacuum chamber body. Moreover, the water velocity in the cooling pipe must be taken into account in thermal calculations. In this paper, we study and investigate the effects of the filler metal and the cooling water velocity in cooling the chambers. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS022 | |
About • | Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS023 | The Elettra 2.0 Project | 1459 |
|
||
The project status of the future Italian 2.4 GeV fourth generation light source Elettra 2.0 that will replace the third-generation light source Elettra is presented. Elettra 2.0 will be the ultra-low emittance light source that will provide ultra-high brilliance and coherence and at the same time aims to provide very short pulses for time resolved experiments. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS023 | |
About • | Received ※ 23 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS027 | ALBA II Acelerator Upgrade Project | 1467 |
|
||
ALBA is working on the upgrade project that shall transform the actual storage ring, in operation since 2012, into a 4th generation light source, in which the soft X-rays part of the spectrum shall be diffraction limited. The project has been officially launched in 2021 and a White Paper presenting the main concepts of the upgrade has been published in Spring 2022. The storage ring upgrade is based on a 6BA lattice which has to comply with several constraints imposed by the decision of maintaining the same circumference (269 m), the same number of cells (16), the same beam energy (3 GeV), and as many of the source points as possible unperturbed. The lattice optimization has achieved an emittance of 140 pm.rad, which is a factor 30 smaller than that of the existing ring, but with an array compactness that presents technological challenges for the magnets, vacuum, diagnostics, RF systems and injection elements designs that are being investigated through an intensive R&D program. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS027 | |
About • | Received ※ 06 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS029 | Status of the PETRA IV Machine Project | 1475 |
|
||
DESY is planning the upgrade of PETRA III to a fourth generation light source, providing high brightness, quasi diffraction limited hard X-ray photons. The project is underpinned by the construction of a new storage ring PETRA IV, based on a 20 pm accelerator lattice using a hybrid 6-bend achromat concept. We review here the status of the machine project, the latest development in the different technical subsystems, the status of the engineering integration and the plans for the implementation of the new ring in the existing PETRA III tunnel. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS029 | |
About • | Received ※ 14 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS030 | Event Tree Model for Safety Reliability Analysis of High Energy Electron 1.2 GeV Radiation Monitoring System Design | 1479 |
|
||
Funding: The Science, Research, and Innovation Fund (SRI fund) The SPS Radiation Monitoring System (SPSRMS) has been designed to measure the ionizing radiation which are generated from the high-energy electron 1.2 GeV. SPSRMS design shall be performed to assure of the adequate performance system in order to prevent the radiation exposure of workers and general public in the synchrotron facility. The research purpose is to evaluate the frequency of failure of real-time radiation monitoring system design that might be happened from the abnormal case which is unable to transfer the important radiation dose continuously. An Event Tree Analysis (ETA) had been approached to evaluate the safety reliability of the SPSRMS which is a method of deducing possibilities and outcomes in a chronological order. This method has been determined the probability of possible negative outcomes that can cause harm and result from the chosen initiating event. The scenario results showed that reliability was increased from 99.71%±19.57% to 99.80%±19.58% (95% confidential level) after adding redundancy in all the devices. The reliability assessment results of SPSRMS are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS030 | |
About • | Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 30 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS031 | Fill Pattern for Reducing Transient Beam Loading and Ion-Trapping in the Diamond-II Storage Ring | 1483 |
|
||
The Diamond-II upgrade will replace the existing Diamond storage ring with a multibend achromat lattice providing higher brightness to the users by reducing the emittance and increasing the beam energy. The new storage ring will require a harmonic cavity that lengthens the bunches to increase the Touschek lifetime as well as mitigate instabilities and suppress the emittance blow up from intrabeam scattering. It is expected that the ring will have to operate with gaps in the fill pattern for ion-clearing, but that will lead to transient beam loading resulting in reduced bunch lengthening. The length and occurrence of the gaps therefore have to be determined as a trade-off between the requirements for transient beam loading and ion-trapping. This paper presents simulations of both effects for the Diamond-II storage ring to find an optimal fill pattern. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS031 | |
About • | Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 24 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS032 | Performance of the Diamond-II Storage Ring Collimators | 1487 |
|
||
Particle losses in a storage ring are unavoidable and it is very important to capture them and protect the machine from any possible damage. For this purpose, 6 collimators have been introduced in the Diamond-II storage ring lattice. This paper describes the main layout of the collimators with their corresponding impact and performance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS032 | |
About • | Received ※ 06 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS033 | Diamond-II Storage Ring Developments and Performance Studies | 1491 |
|
||
The Diamond-II project includes a replacement of the existing double-bend achromat storage ring with a modified hybrid 6-bend achromat, doubling the number of straight sections and increasing the photon beam brightness by up to two orders of magnitude*. The design and performance characterisation of the new storage ring has continued to progress, including a switch to an aperture-sharing injection scheme, freezing the magnet layout, studying the impact of IDs, developing a commissioning procedure and investigating collective effects. In this paper we present an overview of these studies, including final performance estimates.
*Diamond-II Technical Design Report, Diamond Light Source Ltd. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS033 | |
About • | Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS034 | Tunability and Alternative Optics for the Diamond-II Storage Ring | 1495 |
|
||
When defining the magnet specifications, a key consideration is that the hardware should be flexible enough to allow some contingency for future tuning requirements or for alternative lattice solutions to be implemented. To define the required tunability of the magnets, we have investigated two lattice solutions for the Diamond-II storage ring upgrade, one with reduced beta functions at the straight sections for improved matching to the photon beam and one with an ultra-low emittance of 87 pm with IDs. In this paper, the linear and nonlinear beam dynamic issues as well as the photon beam brightness for these two options will be presented and discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS034 | |
About • | Received ※ 06 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS035 | Emittance Feedback for the Diamond-II Storage Ring Using Resonant Excitation | 1498 |
|
||
In the Diamond Light Source storage ring, the vertical emittance is kept at 8 pm rad during operation to maintain the source brightness for the users. This is achieved by a feedback which modifies the skew quadrupole strengths, but has disadvantages such as the introduction of betatron coupling and vertical dispersion. For the proposed Diamond-II upgrade, the storage ring will have a much smaller horizontal emittance, meaning a significantly larger coupling would be required to reach the target vertical emittance, negatively affecting the off-axis injection process. To solve this problem, a feedback using the transverse multibunch feedback striplines to drive the beam at a synchrotron sideband is planned. By driving the beam resonantly in this way, the emittance can be increased without modification of the optics. This paper describes simulations of the effects of linear and non-linear optics on the excitation as well as the impact of the machine impedance for the Diamond-II storage ring. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS035 | |
About • | Received ※ 19 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOMS036 | Commissioning of the Lower Emittance Lattice at SPEAR3 | 1502 |
|
||
SPEAR3, commissioned in 2004, is a third generation light source at the SLAC National Accelerator Laboratory. The low emittance lattice with an emittance of 10 nm had been operated for over a decade until the recent commission of the new lower emittance lattice with 7 nm emittance. The new lattice, based on the same double-bend achromat lattice, has pushed toward the design limit of such type of lattice in SPEAR3. In this paper, we will elaborate our commissioning experience for the new lattice in SPEAR3. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS036 | |
About • | Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXSP1 | A New Compact 3 GeV Light Source in Japan | 2402 |
|
||
A new 3 GeV light source with a circumference of 350 m and an MBA lattice has been officially funded and is being constructed in north-eastern Japan. Aiming at stable and high-performance operations with an emittance of about 1 nm rad, various design and R&D activities are being performed: the four bend achromatic lattice using BQ combined function magnets; the compact RF system using a TM020 mode and in-cavity compact HOM absorbers; the in-vacuum off-axis injection scheme enabling stored beam oscillation-free injections with a small injection beam amplitude; the injector linac composed of a thermionic E-gun and C-band accelerators with a capability of extension to feed a future SX-FEL driver, and so on. The installation of accelerator components is ongoing. The talk will include the overall design of the light source, R&D results, and the latest construction status. | ||
Slides THIXSP1 [15.084 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THIXSP1 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOPT035 | A Second Generation Light Source Aiming at High Power on the Giant Dipole Resonance | 2661 |
|
||
We propose an accelerator concept which could enable nuclear waste transmutation and energy amplification using a second generation light source rather than a high power proton beam. The main parameters of the ring and insertion devices are estimated, targeting a photon beam power of 1 GW with a spectrum that maximizes the potential for nuclear reactions via the Giant Dipole Resonance. The synergies with technologies developed for high energy physics, in particular within the Future Circular Collider study (FCC), are highlighted. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT035 | |
About • | Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |