MC1: Circular and Linear Colliders
A17: High Intensity Accelerators
Paper Title Page
WEOXGD1 Studies and Mitigation of Collective Effects in FCC-ee 1583
 
  • M. Migliorati, E. Carideo
    Sapienza University of Rome, Rome, Italy
  • C. Antuono, E. Carideo
    CERN, Meyrin, Switzerland
  • M. Behtouei, B. Spataro, M. Zobov
    LNF-INFN, Frascati, Italy
  • Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: The Future Circular Collider Innovation Study (FCCIS) receives funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754.
In order to achieve a high luminosity in the future electron-positron circular collider (FCC-ee), very intense multi-bunch colliding beams should have nanometer scale transverse beam sizes at the collision points. For this purpose the emittances of the colliding beams are chosen to be very small, comparable to those of the modern synchrotron light sources, while the stored beam currents should be close to the best values achieved in the last generation of particle factories. In order to preserve beam quality and to avoid collider performance degradation, a careful study of the collective effects and techniques for their mitigation is required. The current status of these studies is discussed in the paper.
 
slides icon Slides WEOXGD1 [2.898 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXGD1  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST026 Conceptual Design of the FCC-ee Beam Dumping System 1753
SUSPMF002   use link to see paper's listing under its alternate paper code  
 
  • A.M. Krainer, P. Andreu Muñoz, W. Bartmann, M. Calviani, Y. Dutheil, A. Lechner, F.-X. Nuiry, A. Perillo-Marcone
    CERN, Meyrin, Switzerland
  • R.L. Ramjiawan
    JAI, Oxford, United Kingdom
 
  The Future Circular electron-positron Collider (FCC-ee) will have stored beam energies of up to 20 MJ. This is a factor 100 higher than any current or past lepton collider. A safe and reliable disposal of the beam onto a beam dump block is therefore critical for operation. To ensure the survival of the dump core blocks, transversal dilution of the beam is necessary. To reduce the complexity of the system and guarantee high availability, an optimized, semi-passive beam dumping system has been designed. The main dump absorber design has been optimized following recent studies for high energy dump block materials for the LHC High Luminosity upgrade. First simulations regarding the radiation environment of the dumping system have been carried out, allowing the definition of preliminary constraints for the integration with respect to radiation sensitive equipment. The performance of the system has been evaluated using Monte-Carlo simulations as well as thermomechanical Finite-Element-Analysis to investigate potential material failure and assess safety margins. An experiment at the CERN HiRadMat facility has been carried out and preliminary results show good agreement with simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST026  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)