Author: Wang, N.
Paper Title Page
WEPOMS055 Cathode Space Charge in Bmad 2380
 
  • N. Wang
    Cornell University, Ithaca, New York, USA
  • J.A. Crittenden, C.M. Gulliford, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: This project was supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
We present an implementation of charged particle tracking with the cathode space charge effect included which is now openly available in the Bmad toolkit for charged particle simulations. Adaptive step size control is incorporated to improve the computational efficiency. We demonstrate its capability with a simulation of a DC gun and compare it with the well-established space charge code Impact-T.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS055  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)