Author: Wang, H.
Paper Title Page
TUPOTK040 Design of the Electron Ion Collider Electron Storage Ring SRF Cavity 1307
 
  • J. Guo, E. Daly, J. Henry, J. Matalevich, G.-T. Park, R.A. Rimmer, H. Wang, S. Wang
    JLab, Newport News, Virginia, USA
  • D. Holmes, K.S. Smith, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The Electron Ion Collider (EIC) under construction at Brookhaven National Laboratory is a high luminosity collider as the next major research facility for the nuclear physics community. Among the numerous RF subsystems in the EIC, the electron storage ring (ESR) fundamental RF cavities system is one of the most challenging. This system will handle a high beam current of up to 2.5 A and replenish up to 10 MW of beam power losses from synchrotron radiation and HOM. Variable coupling is required in the cavities due to the wide range of required total RF voltage and beam current combinations. In this paper, we will present the status of the design and future plans.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK040  
About • Received ※ 16 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK057 Innovative Magnetron Power Sources for Superconducting RF (SRF) Accelerators 1348
 
  • M.L. Neubauer, R.P. Johnson, R.R. Lentz, M. Popovic, T. Wynn
    Muons, Inc, Illinois, USA
  • R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by DOE SBIR grant # DE-SC0022484
A magnetron suitable for 1497 MHz klystron replacements at Jefferson Lab will be constructed and tested with our novel patented subcritical voltage operation methods to drive an SRF cavity. The critical areas of magnetron manufacturing and design affecting life-cycle costs that will be modeled for improvement include: Qext, filaments, magnetic field, vane design, and novel control of outgassing. The most immediate benefit of this project is to make SRF accelerator projects more affordable for NP and other users of SRF Linacs. One of the most attractive commercial applications for SRF accelerators is to drive subcritical nuclear reactors to burn Light Water Reactor Spent Nuclear Fuel (LWR SNF). A 1 GeV proton beam hitting an internal uranium spallation neutron target can produce over 30 neutrons for each incident proton to allow the reactor to operate far below criticality to generate electricity or process heat while reducing high-level waste disposal costs. This commercial application has the additional attribute of addressing climate change.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK057  
About • Received ※ 09 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK058 Development and Testing of High Power CW 1497 MHz Magnetron 1351
 
  • M. Popovic, M.A. Cummings, A. Dudas, R.P. Johnson, R.R. Lentz, M.L. Neubauer, T. Wynn
    Muons, Inc, Illinois, USA
  • T. Blassick, J.K. Wessel
    Richardson Electronics Ltd, Lafox, Illinois, USA
  • K. Jordan, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by DOE NP STTR grant DE-SC0013203
We have designed, built, and tested a new magnetron tube that generates RF power at 1497 MHz. In the tests so far, the tube has produced CW 9 kW RF power, where the measured power is limited by the test equipment. The final goal is to use it to power superconducting (SC) cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK058  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 27 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST025 A High Power Prototype of a Harmonic Kicker Cavity 1749
 
  • G.-T. Park, G.A. Grose, J. Guo, A. OBrien, R.A. Rimmer, H. Wang, R.S. Williams
    JLab, Newport News, Virginia, USA
  • S.A. Overstreet
    ODU, Norfolk, Virginia, USA
 
  A harmonic kicker, a beam exchange device that can deflect the beam at an ultra-fast time scale (a few ns), has been developed in Jefferson Lab *, **. The high power prototype that can deliver more than a 100 kV kick at 7 kW was fabricated. The RF performance of cavity such as the harmonic resonant frequencies, kick profiles, it’s stability, and electric center is tested at bench. The cavity will eventually be tested with a beam at Upgraded Injector Test Facility (UITF) in Jefferson Lab. In this paper, we report some features of fabrication and bench test results. We also briefly describe our beam test plan in the future.
* G.Park, H.Wang, R.A.Rimmer, S. Wang, and J.Guo, THP092, Proceedings of IPAC2018, Vancouver, Canada (2018).
** G.Park, et al, WEPRBO99, Proceedings of IPAC2019, Melbourne, Australia (2019).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST025  
About • Received ※ 11 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)