Author: Wang, G.M.
Paper Title Page
TUPOST058 Badger: The Missing Optimizer in ACR 999
 
  • Z. Zhang, A.L. Edelen, J.R. Garrahan, C.E. Mayes, S.A. Miskovich, D.F. Ratner, R.J. Roussel, J. Shtalenkova
    SLAC, Menlo Park, California, USA
  • M. Böse, S. Tomin
    DESY, Hamburg, Germany
  • Y. Hidaka, G.M. Wang
    BNL, Upton, New York, USA
 
  Badger is an optimizer specifically designed for Accelerator Control Room (ACR). It’s the spiritual successor of Ocelot optimizer. Badger abstracts an optimization run as an optimization algorithm interacts with an environment, by following some pre-defined rules. The environment is controlled by the algorithm and tunes/observes the control system/machine through an interface, while the users control/monitor the optimization flow through a graphical user interface (GUI) or a command line interface (CLI). This paper would introduce the design principles and applications of Badger.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST058  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT064 Online Optimization of NSLS-II Dynamic Aperture and Injection Transient 1159
 
  • X. Yang, B. Bacha, S. Buda, C. Danneil, A.A. Derbenev, D.J. Durfee, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo Jr, F. Plassard, T.V. Shaftan, V.V. Smaluk, Y. Tian, G.M. Wang, L.H. Yu
    BNL, Upton, New York, USA
 
  The goal of the NSLS-II online optimization project is to improve the beam quality for the user experiments. To increase the beam lifetime and injection efficiency, we have developed a model-independent online optimization of nonlinear beam dynamics using advanced algorithms, such as Robust Conjugate-Gradient Algorithm (RCDS). The optimization objective is the injection efficiency and optimization variables are the sextupole magnet strengths. Using the online optimization technique, we increased the NSLS-II dynamic aperture and reduced the amplitude-dependent tune shift. Recently, the sextupole optimization was successfully applied to double the injection efficiency up to above 90% for the high-chromaticity lattice being developed to improve the beam stability and to in-crease the single-bunch beam intensity. Minimizing the beam perturbation during injection is the second objective in this project, realized by online optimization of the injection kickers. To optimize the full set of kicker parameters, including the trigger timing, amplitude, and pulse width, we upgraded all kicker power supplies with the capability of tunable waveform width. As a result, we have reduced the injection transient by a factor of 29, down to the limit of 60 um.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT064  
About • Received ※ 18 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)