Author: Tan, W.H.
Paper Title Page
MOPOMS012 Simulation Studies of Drive Beam Instability in a Dielectric Wakefield Accelerator 645
 
  • W.H. Tan, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Huebl, R. Jambunathan, R. Lehé, A. Myers, T. Rheaume, J.-L. Vay, W. Zhang
    LBNL, Berkeley, California, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the US DOE award DE-SC0018656 with NIU and DE-AC02-06CH11357 with ANL. This work used resources from NERSC, supported by DOE contract DE-AC02-05CH11231. This research used WarpX, which is supported by the US DOE Exascale Computing Project. Primary WarpX contributors are with LBNL, LLNL, CEA-LIDYL, SLAC, DESY, CERN, and Modern Electron.
Beam-driven collinear wakefield acceleration using structure wakefield accelerators promises a high gradient acceleration within a smaller physical footprint. Sustainable extraction of energy from the drive beam relies on precise understanding of its long term dynamics and the possible onset or mitigation of the beam instability. The advance of computational power and tools makes it possible to model the full physics of beam-driven wakefield acceleration. Here we report on the long-term beam dynamics studies of a drive beam considering the example of a dielectric waveguide using high fidelity particle-in-cell simulations performed with WarpX.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS012  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS013 Toward Emittance Measurements at 11.7 GHz Short-Pulse High-Gradient RF Gun 649
 
  • S.V. Kuzikov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • G. Chen, C.-J. Jing, P. Piot, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This project is supported with DoE SBIR Phase II Grant #DE-SC0018709.
A short pulse high gradient RF gun has been recently tested at Argonne Wakefield Accelerator (AWA) facility. The carried-out test showed that the 1,5-cell gun was able to inject 3 MeV, up to 100 pC bunches at room tem-perature being fed by 9 ns up to 300 MW 11.7 GHz puls-es. The cathode field was as high as about 400 MV/m. So high field is aimed to mitigate repealing Coulomb forces substantially. In accordance with simulations the emit-tance could be as low as less than 0.2 mcm. To obtain so low emittance in the experiment, the gun is assumed to be equipped with a downstream linac to be fed from the same power extractor as the gun itself. Here we report design of the RF power distribution system splitting RF power among the gun and the linac, results of low-power tests, and emittance measurement plans for upcoming new experiment at AWA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS013  
About • Received ※ 01 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS014 Commissioning of a High-Gradient X-Band RF Gun Powered by Short RF Pulses from a Wakefield Accelerator 652
SUSPMF040   use link to see paper's listing under its alternate paper code  
 
  • W.H. Tan, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.P. Antipov, C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, G. Ha, C.-J. Jing, W. Liu, X. Lu, P. Piot, P. Piot, J.G. Power, J. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No DE-SC0018709 at Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A high-gradient X-band (11.7-GHz) photoinjector developed by Euclid Techlabs, was recently commissioned at the Argonne Wakefield Accelerator (AWA). The system comprises a 1+1/2-cell RF gun powered by short RF pulses generated as a train of high-charge bunches from the AWA accelerator passes through a slow-wave power extraction and transfer structure. The RF photoinjector was reliably operating with electric fields in excess of 300 MV/m on the photocathode surface free of breakdown and with an insignificant dark-current level. We report on the RF-gun setup, commissioning, and the associated beam generation via photoemission.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)