Author: Talebi Motlagh, S.
Paper Title Page
TUPOMS022 Cooling Challenges in a NEG-Coated Vacuum Chamber of a Light Source 1456
SUSPMF009   use link to see paper's listing under its alternate paper code  
 
  • S. Talebi Motlagh, A. Danaeifard, J. Rahighi, F. Saeidi
    ILSF, Tehran, Iran
  • F. Zamani
    University of Kashan, Kashan, Iran
 
  In a light Source, unused synchrotron radiation is being distributed along the walls of the chambers. Due to the small conductance of the chambers, vacuum pumping is based on the distributed concept, and then non-evaporable getter (NEG) coating is extensively used. The vacuum chambers are made of copper alloys tube, and cooling circuits are welded to the chamber to remove the heat load from the radiation generated. Filler metal is used to create a brazed joint between the water cooling pipe and the vacuum chamber body. The thermal conductivity of the fillers is less than the vacuum chamber body. Moreover, the water velocity in the cooling pipe must be taken into account in thermal calculations. In this paper, we study and investigate the effects of the filler metal and the cooling water velocity in cooling the chambers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS022  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)