Author: Skoufaris, K.
Paper Title Page
MOPOTK031 10 TeV Center of Mass Energy Muon Collider 515
 
  • K. Skoufaris, C. Carli, D. Schulte
    CERN, Meyrin, Switzerland
 
  A Muon collider can provide unique opportunities in high-energy physics as an energy frontier machine. However, a number of challenges have to be addressed during the design process primarily due to the short lifetime of muons. In this work, a lattice for a §I10{TeV} center-of-mass energy collider is presented. Some of the more important challenges faced are: the design of an interaction region with β* values of the order of a few millimeters and an adequate chromatic compensation without sacrificing the physical and dynamic aperture, the flexibility to control the momentum compaction factor and the radiation generated where neutrinos from muons decays reach the surface. These issues are addressed with the development of a new chromatic correction scheme, the extensive use of flexible momentum compaction factor cells and the efficient control of the optical parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK031  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST001 Radiation Load Studies for Superconducting Dipole Magnets in a 10 TeV Muon Collider 1671
 
  • D. Calzolari, C. Carli, B. Humann, A. Lechner, G. Lerner, F. Salvat Pujol, D. Schulte, K. Skoufaris
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Among the various future lepton colliders under study, muon colliders offer the prospect of reaching the highest collision energies. Despite the promising potential of a multi-TeV muon collider, the short lifetime of muons poses a severe technological challenge for the collider design. In particular, the copious production of decay electrons and positrons along the collider ring requires the integration of continuous radiation absorbers inside superconducting magnets. The absorbers are needed to avoid quenches, reduce the heat dissipation in the cold mass and prevent magnet failures due to long-term radiation damage. In this paper, we present FLUKA shower simulations assessing the shielding requirements for high-field magnets of a 10 TeV muon collider. We quantify in particular the role of synchrotron photon emission by decay electrons and positrons, which helps in dispersing the energy carried by the decay products. For comparison, selected results for a 3 TeV muon collider are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)