Author: Signorelli, M.G.
Paper Title Page
WEPOPT042 Designing the EIC Electron Storage Ring Lattice for a Wide Energy Range 1946
 
  • D. Marx, J.S. Berg, J.S. Berg, J. Kewisch, Y. Li, Y. Li, C. Montag, V. Ptitsyn, V. Ptitsyn, S. Tepikian, F.J. Willeke, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • B.R. Gamage, V.S. Morozov, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter, G.H. Hoffstaetter, D. Sagan, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-SC0012704, by Jefferson Science Associates, LLC, under Contract No. DE-AC05-06OR23177, by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) will collide electrons with hadrons at center-of-mass energies up to 140 GeV (in the case of electron-proton collisions). A 3.8-kilometer electron storage ring is being designed, which will store electrons with a range of energies up to 18 GeV for collisions at one or two interaction points. At energies up to 10 GeV the arcs will be tuned to provide 60 degree phase advance per cell in both planes, whereas at top energy of 18 GeV a 90 degree phase advance per cell will be used, which largely compensates for the horizontal emittance increase with energy. The optics must be matched at three separate energies, and the different phase-advance requirements in both the arc cells and the straight sections make this challenging. Moreover, the spin rotators must fulfill requirements for polarization and spin matching at widely different energies while satisfying technical constraints. In this paper these challenges and proposed solutions are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT042  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS051 Spin Matching for the EIC’s Electrons 2369
 
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
  • J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Kewisch
    BNL, Upton, New York, USA
 
  The Electron-Ion Collider (EIC) at Brookhaven National Laboratory will provide spin-polarized collisions of electron and protons or light ion beams. In order to maximize the electron polarization and require less frequent beam re-injections to restore the polarization level, the stochastic depolarizing effects of synchrotron radiation must be minimized via spin matching. In this study, Bmad was used to perform first order spin matching in the Electron Storage Ring (ESR) of the EIC. Spin matches were obtained for the rotator systems and for a vertical chicane, inserted as a vertical emittance creator. Monte Carlo spin tracking with radiation was then performed to analyze the effects of the spin matching on the polarization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS051  
About • Received ※ 31 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)