Author: Shpani, L.
Paper Title Page
TUPOTK036 Study of Chemical Treatments to Optimize Niobium-3 Tin Growth in the Nucleation Phase 1295
 
  • L. Shpani, S.G. Arnold, G. Gaitan, M. Liepe, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Arias, M.M. Kelley, N. Sitaraman
    Cornell University, Ithaca, New York, USA
 
  Funding: This research is funded by the National Science Foundation under Grant No. PHY-1549132, the Center for Bright Beams.
Niobium-3 Tin (Nb3Sn) is a high-potential material for next-generation Superconducting Radiofrequency (SRF) cavities in particle accelerators. The most promising growth method to date is based on vapor diffusion of tin into a niobium substrate with nucleating agent Tin Chloride (SnCl2). Still, the current vapor diffusion recipe has significant room for realizing further performance improvement. We are investigating how different chemical treatments on the niobium substrate before coating influence the growth of a smooth and uniform Nb3Sn layer. More specifically, this study focuses on the interaction between the SnCl2 nucleating agent and the niobium surface oxides. We compare the effect of different chemical treatments with different pH values on the tin droplet distribution on niobium after the nucleation stage of coating. We also look at the effect that the nucleation temperature has on the smoothness and uniformity of the tin distribution, with the ultimate goal of optimizing the recipe to coat smooth Nb3Sn cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK036  
About • Received ※ 12 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK038 Next Generation SRF Cavities at Cornell University 1303
SUSPMF113   use link to see paper's listing under its alternate paper code  
 
  • N.M. Verboncoeur, M. Liepe, R.D. Porter, L. Shpani
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Our goal is to develop new materials and protocols for the growth and preparation of thin-film and layered superconductors for next generation SRF cavities with higher performance for future accelerators. We are working primarily with Nb3Sn to achieve this goal, as well as other materials which aim to optimize the RF field penetration layer of the cavity. This contribution gives a general update on our most recent cavity test results. A deeper insight into RF loss distribution and dynamics during cavity testing is gained using a new global high-speed temperature mapping system (T-Map).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK038  
About • Received ※ 11 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)