Author: Rubin, D.L.
Paper Title Page
MOPOTK041 Magnetic Field Noise Search Using Turn-by-Turn Data at CESR 553
 
  • V. Khachatryan, J. Barley, M.H. Berry, A.T. Chapelain, D.L. Rubin, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: The authors thank NSF PHYS-1416318 and DMR-1829070.
A method for searching for magnetic field noise has been developed using the CESR beam turn-by-turn data. The technique is tested using Monte-Carlo samples and turn-by-turn real data with induced noise in one of the CESR magnets. We estimate the analysis sensitivity for the noise sources slower than 4 kHz (or 100 CESR-turns) with the current CESR BPM system on the level of 1 microradian or 0.2 Gs×m field integral. In this work we report the observed noise sources and the improvements achieved by applying this technique. Long-term, several hours, beam stability analysis is also performed using the same method.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK041  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS030 A Path-Length Stability Experiment for Optical Stochastic Cooling at the Cornell Electron Storage Ring 2311
SUSPMF077   use link to see paper's listing under its alternate paper code  
 
  • S.J. Levenson, M.B. Andorf, I.V. Bazarov, V. Khachatryan, J.M. Maxson, D.L. Rubin, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams and NYSTAR award C150153.
To achieve sufficient particle delay with respect to the optical path in order to enable high gain amplification, the design of the Optical Stochastic Cooling (OSC) experiment in the Cornell Electron Storage Ring (CESR) places the pickup (PU) and kicker (KU) undulators approximately 80 m apart. The arrival times at the KU of particles and the light they produce in the PU must be synchronized to an accuracy of less than an optical wavelength, which for this experiment is 780 nm. To test this synchronization, a planned demonstration of the stability of the bypass in CESR is presented where, in lieu of undulators, an interference pattern formed with radiation from two dipoles flanking the bypass is used. In addition to demonstrating stability, the fringe visibility of the pattern is related to the cooling ranges, a critical parameter needed for OSC. We present progress on this stabilization experiment including the design of a second-order isochronous bypass, as well as optimizations of the Dynamic Aperture (DA) and injection efficiency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS030  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS031 Light Path Construction for an Optical Stochastic Cooling Stability Test at the Cornell Electron Storage Ring 2315
 
  • S.J. Levenson, M.B. Andorf, I.V. Bazarov, D.C. Burke, J.M. Maxson, D.L. Rubin, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams and NYSTAR award C150153.
An experiment at the Cornell Electron Storage Ring (CESR) to test the optical path-length stability of a bypass suitable for Optical Stochastic Cooling (OSC) is being pursued. The approximately 80 m light path for this experiment has been assembled, and synchrotron light has been successfully propagated from both sources. A feedback system based on an Electro-Optic Modulator (EOM) to correct the path-error accumulated in both the light and particle path has been table-top tested. We present on the design and construction of the light optics for the OSC stability experiment at CESR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS031  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT066 Helical Wiggler Design for Optical Stochastic Cooling at CESR 2751
 
  • V. Khachatryan, M.B. Andorf, I.V. Bazarov, J.A. Crittenden, S.J. Levenson, J.M. Maxson, D.L. Rubin, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • W.F. Bergan
    BNL, Upton, New York, USA
 
  Funding: The authors thank the Center for Bright Beams, NSF award PHY-1549132; W.F.B. was supported by the NSF Graduate Research Fellowship Program under grant number DGE-1650441.
A helical wiggler with parameter kund=4.35 has been designed for the Optical Stochastic Cooling (OSC) experiment in the Cornell Electron Storage Ring (CESR). We consider four Halbach arrays, which dimensions are optimized to get the required helical field profile, as well as, to get the best Dynamic Aperture (DA) in simulations. The end poles are designed with different dimensions to minimize the first and second field integrals to avoid the need of additional correctors for the beam orbit. The design is adopted to minimize the risks for the magnet blocks demagnetization. To quantify the tolerances, we simulated the effects of different types of geometrical and magnetic field errors on the OSC damping rates. In addition, to understand the challenges for the construction, as well as, to validate the model field calculations, we prototyped a small two period version. The prototype field is compared to the model, and the results are presented in this work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT066  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)