Author: Rossmanith, R.
Paper Title Page
WEPOST034 Magnetic Characterization of a Superconducting Transverse Gradient Undulator for Compact Laser Wakefield Accelerator-Driven FELs 1772
SUSPMF035   use link to see paper's listing under its alternate paper code  
 
  • K. Damminsek, A. Bernhard, H.J. Cha, A.W. Grau, A.-S. Müller, M.S. Ning, Y. Tong
    KIT, Karlsruhe, Germany
  • S.C. Richter
    CERN, Meyrin, Switzerland
  • R. Rossmanith
    DESY, Hamburg, Germany
 
  Funding: Federal Ministry of Education and Research of Germany and the Development and Promotion of Science and Technology Talents Project (DPST)
A transverse gradient undulator (TGU) is a key component compensating for the relatively large energy spread of Laser Wakefield Accelerator (LWFA)-generated electron beams for realizing a compact Free Electron Laser (FEL). A superconducting TGU with 40 periods has been fabricated at the Karlsruhe Institute of Technology (KIT). In this contribution, we report that the superconducting TGU has been commissioned with nominal operational parameters at an off-line test bench. An experimental set-up for mapping the magnetic field on a two-dimensional grid in the TGU gap has been employed for the magnetic characterization. We show the first preliminary results of these measurements showing the longitudinal quality, the transverse gradient and the transient behaviour of the superconducting TGU field.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST034  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)