Author: Rey, A.
Paper Title Page
TUPOST025 Beam Commissioning of the New Digital Low-Level RF System for CERN’s AD 911
 
  • M.E. Angoletta, S.C.P. Albright, D. Barrientos, A. Findlay, M. Jaussi, A. Rey, M. Sumiński
    CERN, Meyrin, Switzerland
 
  CERN’s Antiproton Decelerator (AD) has been re-furbished to provide reliable operation for the Extra Low ENergy Antiproton ring (ELENA). In particular, AD was equipped with a new digital Low-Level RF (LLRF) system that was successfully commissioned during the summer 2021. The new AD LLRF system has routinely captured and decelerated more than 3·107 antiprotons from 3.5 GeV/c to 100 MeV/c in successive steps, referred to as RF segments, interleaved by cooling periods. The LLRF system implements the frequency program from Btrain data received over optical fiber. Beam phase/radial and cavity amplitude/phase feedback loops are operated during each RF segment. An extraction synchronization loop is triggered on the extraction RF segment to transfer a single bunch of antiprotons to ELENA. Extensive diagnostics features are available and operational modes such as bunched beam cooling and bunch rotation have been successfully deployed. The LLRF parameters can be different for each RF segment and are controlled by a dedicated application. This paper gives an overview of the AD LLRF beam commissioning results obtained and challenges overcome. Hints on future steps are also provided.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST025  
About • Received ※ 25 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)