Author: Pokharel, S.
Paper Title Page
MOPOTK051 Modeling a Nb3Sn Cryounit in GPT at UITF 576
SUSPMF061   use link to see paper's listing under its alternate paper code  
 
  • S. Pokharel, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • A.S. Hofler, G.A. Krafft
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Nb3Sn is a prospective material for future superconducting RF (SRF) accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (Eacc 96 MV/m) compared to conventional niobium. In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb3Sn cavities. We studied the effects of the buncher cavity and varied the gun voltages from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb3Sn five-cell cavities energy gains with the framework of General Particle Tracer (GPT). Our calculations show the beam goes cleanly through the unit. There is full energy gain out of the second SRF cavity but not from the first SRF cavity due to non-relativistic phase shifts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK051  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK052 CEBAF Injector Model for KL Beam Conditions 580
 
  • S. Pokharel, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • M.W. Bruker, J.M. Grames, A.S. Hofler, R. Kazimi, G.A. Krafft, S. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 muA is relatively low compared to the maximum CEBAF current of approximately 180 muA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the beam characteristics for both values of bunch charge. We performed these simulations with the existing injector using a 130 kV gun voltage. We have calculated and measured the transmission as a function of the photocathode laser spot size and pulse length. We report on the findings of these simulations and optimum parameters for operating the experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK052  
About • Received ※ 07 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)