Author: Phimsen, T.
Paper Title Page
MOOPLGD2 SPS-II: A 4th Generation Synchrotron Light Source in Southeast Asia 764
 
  • P. Klysubun, S. Boonsuya, T. Chanwattana, S. Jummunt, N. Juntong, A. Kwankasem, T. Phimsen, P. Photongkam, S. Prawanta, T. Pulampong, K. Sittisard, S. Srichan, P. Sudmuang, P. Sunwong, O. Utke
    SLRI, Nakhon-Ratchasima, Thailand
 
  Upon its completion, Siam Photon Source II (SPS-II) will be the first 4th generation synchrotron light source in Southeast Asia. The 3.0 GeV, 327.5 m storage ring based on the Double-Triple Bend Achromat lattice will have the natural emittance of 0.97 nm·rad. The storage ring includes 14 long and 14 short straight sections for insertion devices and machine subsys-tems. The beam injection will be performed by a 150 MeV linear accelerator and a full-energy concentric booster synchrotron sharing the same tunnel with the storage ring. In the first phase, there will be 7 insertion devices and 7 associated beamlines with the end sta-tions for different techniques utilizing synchrotron radiation from 80 eV to 60 keV. High-energy and high-brightness radiation generated by the new light source will serve as one of the most powerful analytical tools in the region for advanced science and technology research.  
slides icon Slides MOOPLGD2 [4.168 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOPLGD2  
About • Received ※ 12 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK052 Beam Coupling Impedance Study and Its Database of Siam Photon Source Storage Ring 2177
 
  • N. Juntong, T. Chanwattana, S. Jummunt, K. Kittimanapun, T. Phimsen, W. Promdee, T. Pulampong
    SLRI, Nakhon Ratchasima, Thailand
 
  Since the Siam Photon Source (SPS) had an electron beam energy upgraded from 1.0 GeV to 1.2 GeV in 2005, the storage ring impedance measurements were done once in 2007. Two insertion magnet devices have been installed in the SPS storage ring during June to August 2013. There are several vacuum components added to the storage ring; these affect the ring impedance. Quantitative understanding of instabilities requires detailed knowledge of the impedance of the ring. For this purpose, the development of an impedance database is a necessity, where the wake potentials of each vacuum component are kept and maintained in a standard format. The self-describing data sets (SDDS) file format will be utilized to record components wake potentials. The wake potentials of each vacuum component can be obtained from a particle tracking simulation; a CST particle studio program will be used in the simulation process. The wake potentials can also be included in a beam dynamic tracking program such as ELEGANT to observe beam behaviors with these instabilities and find a curing means. The study results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK052  
About • Received ※ 19 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS056 An Overview of the Applications of MIR and THz Spectroscopy in Astrochemistry Studies 3102
 
  • C. Suwannajak, U. Keyen, A. Leckngam, N. Tanakul
    NARIT, Chiang Mai, Thailand
  • W. Jaikla, S. Pakluea, P. Wongkummoon
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
  • P. Nimmanpipug, S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
  • S. Pakluea, S. Rimjaem, P. Wongkummoon
    Chiang Mai University, Chiang Mai, Thailand
  • T. Phimsen
    SLRI, Nakhon Ratchasima, Thailand
 
  Interstellar complex molecules can be found in molecular clouds which are spread throughout our galaxy. Some of these molecules are thought to be the precursors of bio-molecules. Therefore, understanding the formation processes of those interstellar complex molecules is crucial to understanding the origin of the building blocks of life. There are currently more than a hundred known complex molecules discovered in interstellar clouds. However, the formation processes of those molecules are not yet well understood since they occur in very extreme conditions and very short time scale. Ultrafast spectroscopy can be applied to study those processes that occur in the time scale of femtoseconds or picoseconds. In this work, we present an overview of the applications of MIR and THz pump-probe experiments in astrochemistry studies. An experimental setup to simulate space conditions that mimic the environments where the interstellar complex molecules are formed is currently being developed at the PBP-CMU Electron Linac Laboratory. Then, we present our development plan of the experimental station and its current status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS056  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)