Author: Parsons, J.R.
Paper Title Page
THPOST046 CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG) 2544
SUSPMF021   use link to see paper's listing under its alternate paper code  
 
  • G.E. Lawler, A. Fukasawa, N. Majernik, J.R. Parsons, J.B. Rosenzweig, Y. Sakai, A. Suraj
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE Contract DE-SC0020409
Producing higher brightness beams at the cathode is one of the main focuses for future electron beam applications. For photocathodes operating close to their emission threshold, the cathode lattice temperature begins to dominate the minimum achievable intrinsic emittance. At UCLA, we are designing a radiofrequency (RF) test bed for measuring the temperature dependence of the mean transverse energy (MTE) and quantum efficiency for a number of candidate cathode materials. We intend to quantify the attainable brightness improvements at the cathode from cryogenic operation and establish a proof-of-principle cryogenic RF gun for future studies of a 1.6-cell cryogenic photoinjector for the UCLA ultra compact XFEL concept (UC-XFEL). The test bed will use a C-band 0.5-cell RF gun designed to operate down to 45 K, producing an on-axis accelerating field of 120 MV/m. The cryogenic system uses conduction cooling and a load-lock system is being designed for transport and storage of air-sensitive high brightness cathodes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST046  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK027 Temperature Dependent Effects on Quality Factor in C-band RF Cavities 2826
 
  • J.R. Parsons, A. Fukasawa, G.E. Lawler, N. Majernik, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by DOE Contract DE-SC0020409
Cryogenic operation and associated skin effects are encouraging fields of study for increasing RF gradients of beams within cavities and decreasing the required size for linear accelerators such as free electron lasers. Notably, a cavity’s RF quality factor Q, the ratio of the outgoing RF signal power to the input power, is theoretically multiplied by over 4 when subjected to cryogenic temperatures. Precise measurements of this Q factor require defining a cryostat unit, which consists of a high vacuum chamber, a coldhead, and MLI shielding. We optimized the cryostat by running several cool down tests at high vacuum, incorporating different geometries of MLI shielding to achieve the lowest possible temperatures. We then performed a low power C-band test after installing a cylindrical copper RF cavity to measure the Q factor. Finally, we improved stability and amplification within the chamber by installing edge welded bellows to the coldhead to reduce vibrations. These measurements provide a basis for the development of cryogenic infrastructure to sustain a cryogenic temperature environment for future RF applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK027  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)