Author: Park, G.-T.
Paper Title Page
TUPOTK040 Design of the Electron Ion Collider Electron Storage Ring SRF Cavity 1307
 
  • J. Guo, E. Daly, J. Henry, J. Matalevich, G.-T. Park, R.A. Rimmer, H. Wang, S. Wang
    JLab, Newport News, Virginia, USA
  • D. Holmes, K.S. Smith, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The Electron Ion Collider (EIC) under construction at Brookhaven National Laboratory is a high luminosity collider as the next major research facility for the nuclear physics community. Among the numerous RF subsystems in the EIC, the electron storage ring (ESR) fundamental RF cavities system is one of the most challenging. This system will handle a high beam current of up to 2.5 A and replenish up to 10 MW of beam power losses from synchrotron radiation and HOM. Variable coupling is required in the cavities due to the wide range of required total RF voltage and beam current combinations. In this paper, we will present the status of the design and future plans.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK040  
About • Received ※ 16 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST025 A High Power Prototype of a Harmonic Kicker Cavity 1749
 
  • G.-T. Park, G.A. Grose, J. Guo, A. OBrien, R.A. Rimmer, H. Wang, R.S. Williams
    JLab, Newport News, Virginia, USA
  • S.A. Overstreet
    ODU, Norfolk, Virginia, USA
 
  A harmonic kicker, a beam exchange device that can deflect the beam at an ultra-fast time scale (a few ns), has been developed in Jefferson Lab *, **. The high power prototype that can deliver more than a 100 kV kick at 7 kW was fabricated. The RF performance of cavity such as the harmonic resonant frequencies, kick profiles, it’s stability, and electric center is tested at bench. The cavity will eventually be tested with a beam at Upgraded Injector Test Facility (UITF) in Jefferson Lab. In this paper, we report some features of fabrication and bench test results. We also briefly describe our beam test plan in the future.
* G.Park, H.Wang, R.A.Rimmer, S. Wang, and J.Guo, THP092, Proceedings of IPAC2018, Vancouver, Canada (2018).
** G.Park, et al, WEPRBO99, Proceedings of IPAC2019, Melbourne, Australia (2019).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST025  
About • Received ※ 11 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROXGD2
Development of a Quantum Electron Beam Diagnostic Apparatus  
 
  • S. Zhang, A. Camsonne, G.-T. Park
    JLab, Newport News, Virginia, USA
 
  Funding: U.S. DOE Contract No. DE-AC05-06OR23177 and Jefferson Lab LDRD program.
Characterization of electron beam properties using optical detection methods through the interaction between photons and electrons such as Compton scattering or electro-optic sampling have been successfully implemented as non-invasive diagnostics at various accelerator facilities. However, such methods often suffer from inherently low sensitivity. Here we present the study of a new type of electron beam diagnostic device for direct optical imaging of electron beams at various energy levels. The concept relies on high sensitivity of atoms, prepared in a specific spin quantum superposition, to the perturbations induced by the passing charged particle. Specifically, the magnetic field of the electrons induces polarization change of the probe light as well as changes in light absorption and fluorescence, enabling direct 3D imaging of the charged particles with high resolution. We report our recent experiment results and the design effort on a compact apparatus intended to be tested with the relativistic electron beams at Jefferson Laboratory.
 
slides icon Slides FROXGD2 [17.656 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)